# mindspore.ops.NotEqual

class mindspore.ops.NotEqual[source]

Computes the non-equivalence of two tensors element-wise.

Inputs of x and y comply with the implicit type conversion rules to make the data types consistent. The inputs must be two tensors or one tensor and one scalar. When the inputs are two tensors, the shapes of them could be broadcast. When the inputs are one tensor and one scalar, the scalar could only be a constant.

$\begin{split}out_{i} =\begin{cases} & \text{True, if } x_{i} \ne y_{i} \\ & \text{False, if } x_{i} = y_{i} \end{cases}\end{split}$
Inputs:
• x (Union[Tensor, Number, bool]) - The first input is a number or a bool or a tensor whose data type is number or bool.

• y (Union[Tensor, Number, bool]) - The second input is a number or a bool when the first input is a tensor or a tensor whose data type is number or bool.

Outputs:

Tensor, the shape is the same as the one after broadcasting,and the data type is bool.

Raises
• TypeError – If x and y is not one of the following: Tensor, Number, bool.

• TypeError – If neither x nor y is a Tensor.

Supported Platforms:

Ascend GPU CPU

Examples

>>> x = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> not_equal = ops.NotEqual()
>>> output = not_equal(x, 2.0)
>>> print(output)
[ True False  True]
>>>
>>> x = Tensor(np.array([1, 2, 3]), mindspore.int32)
>>> y = Tensor(np.array([1, 2, 4]), mindspore.int32)
>>> not_equal = ops.NotEqual()
>>> output = not_equal(x, y)
>>> print(output)
[False False  True]