# mindspore.ops.BatchMatMul

class mindspore.ops.BatchMatMul(transpose_a=False, transpose_b=False)[source]

Computes matrix multiplication between two tensors by batch.

$\text{output}[..., :, :] = \text{matrix}(x[..., :, :]) * \text{matrix}(y[..., :, :])$

The first input tensor must be not less than 3 and the second input must be not less than 2.

Parameters
• transpose_a (bool) – If true, the last two dimensions of x is transposed before multiplication. Default: False.

• transpose_b (bool) – If true, the last two dimensions of y is transposed before multiplication. Default: False.

Inputs:
• x (Tensor) - The first tensor to be multiplied. The shape of the tensor is $$(*B, N, C)$$, where $$*B$$ represents the batch size which can be multidimensional, $$N$$ and $$C$$ are the size of the last two dimensions. If transpose_a is True, its shape must be $$(*B, C, N)$$.

• y (Tensor) - The second tensor to be multiplied. The shape of the tensor is $$(*B, C, M)$$. If transpose_b is True, its shape must be $$(*B, M, C)$$.

Outputs:

Tensor, the shape of the output tensor is $$(*B, N, M)$$.

Raises
• TypeError – If transpose_a or transpose_b is not a bool.

• ValueError – If length of shape of x is not equal to length of shape of y or length of shape of x is less than 3.

Supported Platforms:

Ascend GPU CPU

Examples

>>> x = Tensor(np.ones(shape=[2, 4, 1, 3]), mindspore.float32)
>>> y = Tensor(np.ones(shape=[2, 4, 3, 4]), mindspore.float32)
>>> batmatmul = ops.BatchMatMul()
>>> output = batmatmul(x, y)
>>> print(output)
[[[[3. 3. 3. 3.]]
[[3. 3. 3. 3.]]
[[3. 3. 3. 3.]]
[[3. 3. 3. 3.]]]
[[[3. 3. 3. 3.]]
[[3. 3. 3. 3.]]
[[3. 3. 3. 3.]]
[[3. 3. 3. 3.]]]]
>>> x = Tensor(np.ones(shape=[2, 4, 3, 1]), mindspore.float32)
>>> y = Tensor(np.ones(shape=[2, 4, 3, 4]), mindspore.float32)
>>> batmatmul = ops.BatchMatMul(transpose_a=True)
>>> output = batmatmul(x, y)
>>> print(output)
[[[[3. 3. 3. 3.]]
[[3. 3. 3. 3.]]
[[3. 3. 3. 3.]]
[[3. 3. 3. 3.]]]
[[[3. 3. 3. 3.]]
[[3. 3. 3. 3.]]
[[3. 3. 3. 3.]]
[[3. 3. 3. 3.]]]]