mindspore.nn.probability.distribution.Bernoulli

class mindspore.nn.probability.distribution.Bernoulli(probs=None, seed=None, dtype=mstype.int32, name='Bernoulli')[source]

Bernoulli Distribution. A Bernoulli Distribution is a discrete distribution with the range {0, 1} and the probability mass function as \(P(X = 0) = p, P(X = 1) = 1-p\).

Parameters
  • probs (float, list, numpy.ndarray, Tensor) – The probability of that the outcome is 1. Default: None.

  • seed (int) – The seed used in sampling. The global seed is used if it is None. Default: None.

  • dtype (mindspore.dtype) – The type of the event samples. Default: mstype.int32.

  • name (str) – The name of the distribution. Default: ‘Bernoulli’.

Inputs and Outputs of APIs:

The accessible APIs of Bernoulli distribution are defined in the base class, including:

  • prob, log_prob, cdf, log_cdf, survival_function, and log_survival

  • mean, sd, var, and entropy

  • kl_loss and cross_entropy

  • sample

For more details of all APIs, including the inputs and outputs of the APIs of the Bernoulli distribution, please refer to mindspore.nn.probability.distribution.Distribution, and examples below.

Supported Platforms:

Ascend GPU

Note

probs must be a proper probability (0 < p < 1). dist_spec_args is probs.

Raises

ValueError – When p <= 0 or p >=1.

Examples

>>> import mindspore
>>> import mindspore.nn as nn
>>> import mindspore.nn.probability.distribution as msd
>>> from mindspore import Tensor
>>> # To initialize a Bernoulli distribution of the probability 0.5.
>>> b1 = msd.Bernoulli(0.5, dtype=mindspore.int32)
>>> # A Bernoulli distribution can be initialized without arguments.
>>> # In this case, `probs` must be passed in through arguments during function calls.
>>> b2 = msd.Bernoulli(dtype=mindspore.int32)
>>> # Here are some tensors used below for testing
>>> value = Tensor([1, 0, 1], dtype=mindspore.int32)
>>> probs_a = Tensor([0.6], dtype=mindspore.float32)
>>> probs_b = Tensor([0.2, 0.3, 0.4], dtype=mindspore.float32)
>>> # Private interfaces of probability functions corresponding to public interfaces, including
>>> # `prob`, `log_prob`, `cdf`, `log_cdf`, `survival_function`, and `log_survival`, are the same as follows.
>>> # Args:
>>> #     value (Tensor): the value to be evaluated.
>>> #     probs1 (Tensor): the probability of success. Default: self.probs.
>>> # Examples of `prob`.
>>> # Similar calls can be made to other probability functions
>>> # by replacing `prob` by the name of the function.
>>> ans = b1.prob(value)
>>> print(ans.shape)
(3,)
>>> # Evaluate `prob` with respect to distribution b.
>>> ans = b1.prob(value, probs_b)
>>> print(ans.shape)
(3,)
>>> # `probs` must be passed in during function calls.
>>> ans = b2.prob(value, probs_a)
>>> print(ans.shape)
(3,)
>>> # Functions `mean`, `sd`, `var`, and `entropy` have the same arguments.
>>> # Args:
>>> #     probs1 (Tensor): the probability of success. Default: self.probs.
>>> # Examples of `mean`. `sd`, `var`, and `entropy` are similar.
>>> ans = b1.mean() # return 0.5
>>> print(ans.shape)
()
>>> ans = b1.mean(probs_b) # return probs_b
>>> print(ans.shape)
(3,)
>>> # `probs` must be passed in during function calls.
>>> ans = b2.mean(probs_a)
>>> print(ans.shape)
(1,)
>>> # Interfaces of `kl_loss` and `cross_entropy` are the same as follows:
>>> # Args:
>>> #     dist (str): the name of the distribution. Only 'Bernoulli' is supported.
>>> #     probs1_b (Tensor): the probability of success of distribution b.
>>> #     probs1_a (Tensor): the probability of success of distribution a. Default: self.probs.
>>> # Examples of `kl_loss`. `cross_entropy` is similar.
>>> ans = b1.kl_loss('Bernoulli', probs_b)
>>> print(ans.shape)
(3,)
>>> ans = b1.kl_loss('Bernoulli', probs_b, probs_a)
>>> print(ans.shape)
(3,)
>>> # An additional `probs_a` must be passed in.
>>> ans = b2.kl_loss('Bernoulli', probs_b, probs_a)
>>> print(ans.shape)
(3,)
>>> # Examples of `sample`.
>>> # Args:
>>> #     shape (tuple): the shape of the sample. Default: ().
>>> #     probs1 (Tensor): the probability of success. Default: self.probs.
>>> ans = b1.sample()
>>> print(ans.shape)
()
>>> ans = b1.sample((2,3))
>>> print(ans.shape)
(2, 3)
>>> ans = b1.sample((2,3), probs_b)
>>> print(ans.shape)
(2, 3, 3)
>>> ans = b2.sample((2,3), probs_a)
>>> print(ans.shape)
(2, 3, 1)
extend_repr()[source]

Display instance object as string.

property probs

Return the probability of that the outcome is 1 after casting to dtype.

Output:

Tensor, the probs of the distribution.