mindspore.nn.ImageGradients
- class mindspore.nn.ImageGradients[source]
- Returns two tensors, the first is along the height dimension and the second is along the width dimension. - Assume an image shape is \(h*w\). The gradients along the height and the width are \(dy\) and \(dx\), respectively. \[ \begin{align}\begin{aligned}dy[i] = \begin{cases} image[i+1, :]-image[i, :], &if\ 0<=i<h-1 \cr 0, &if\ i==h-1\end{cases}\\dx[i] = \begin{cases} image[:, i+1]-image[:, i], &if\ 0<=i<w-1 \cr 0, &if\ i==w-1\end{cases}\end{aligned}\end{align} \]- Inputs:
- images (Tensor) - The input image data, with format ‘NCHW’. 
 
- Outputs:
- dy (Tensor) - vertical image gradients, the same type and shape as input. 
- dx (Tensor) - horizontal image gradients, the same type and shape as input. 
 
 - Raises
- ValueError – If length of shape of images is not equal to 4. 
 - Supported Platforms:
- Ascend- GPU- CPU
 - Examples - >>> net = nn.ImageGradients() >>> image = Tensor(np.array([[[[1, 2], [3, 4]]]]), dtype=mindspore.int32) >>> output = net(image) >>> print(output) (Tensor(shape=[1, 1, 2, 2], dtype=Int32, value= [[[[2, 2], [0, 0]]]]), Tensor(shape=[1, 1, 2, 2], dtype=Int32, value= [[[[1, 0], [1, 0]]]]))