mindspore.dataset.vision.c_transforms.RandomColorAdjust
- class mindspore.dataset.vision.c_transforms.RandomColorAdjust(brightness=(1, 1), contrast=(1, 1), saturation=(1, 1), hue=(0, 0))[source]
Randomly adjust the brightness, contrast, saturation, and hue of the input image.
- Parameters
brightness (Union[float, list, tuple], optional) – Brightness adjustment factor (default=(1, 1)). Cannot be negative. If it is a float, the factor is uniformly chosen from the range [max(0, 1-brightness), 1+brightness]. If it is a sequence, it should be [min, max] for the range.
contrast (Union[float, list, tuple], optional) – Contrast adjustment factor (default=(1, 1)). Cannot be negative. If it is a float, the factor is uniformly chosen from the range [max(0, 1-contrast), 1+contrast]. If it is a sequence, it should be [min, max] for the range.
saturation (Union[float, list, tuple], optional) – Saturation adjustment factor (default=(1, 1)). Cannot be negative. If it is a float, the factor is uniformly chosen from the range [max(0, 1-saturation), 1+saturation]. If it is a sequence, it should be [min, max] for the range.
hue (Union[float, list, tuple], optional) – Hue adjustment factor (default=(0, 0)). If it is a float, the range will be [-hue, hue]. Value should be 0 <= hue <= 0.5. If it is a sequence, it should be [min, max] where -0.5 <= min <= max <= 0.5.
- Raises
TypeError – If brightness is not of type float or sequence of float.
TypeError – If contrast is not of type float or sequence of float.
TypeError – If saturation is not of type float or sequence of float.
TypeError – If hue is not of type float or sequence of float.
ValueError – If brightness is negative.
ValueError – If contrast is negative.
ValueError – If saturation is negative.
ValueError – If hue is not in range [-0.5, 0.5].
RuntimeError – If given tensor shape is not <H, W, C>.
- Supported Platforms:
CPU
Examples
>>> decode_op = c_vision.Decode() >>> transform_op = c_vision.RandomColorAdjust(brightness=(0.5, 1), ... contrast=(0.4, 1), ... saturation=(0.3, 1)) >>> transforms_list = [decode_op, transform_op] >>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, ... input_columns=["image"])