Source code for mindspore.ops.operations.nn_ops

# Copyright 2020-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

"""Operators for nn."""

import math
from functools import partial
import numpy as np
from mindspore import log as logger
from mindspore._checkparam import _check_3d_int_or_tuple
from ... import context
from .. import signature as sig
from ..._checkparam import Validator as validator
from ..._checkparam import Rel
from ...common import dtype as mstype
from ...common._decorator import deprecated
from ..primitive import Primitive, PrimitiveWithInfer, PrimitiveWithCheck, prim_attr_register


def _check_positive_int_or_tuple(arg_name, arg_value, prim_name, allow_four=False, ret_four=False):
    """
    Checks whether an argument is a positive int or tuple with 2 or 4(when allow_four is True) positive int elements.
    """

    def _raise_message():
        raise ValueError(f"For '{prim_name}' attr '{arg_name}' should be an positive int number or a tuple of two "
                         f"{'or four ' if allow_four else ''}positive int numbers, but got {arg_value}")

    def _get_return_value():
        if isinstance(arg_value, int):
            ret = (1, 1, arg_value, arg_value) if ret_four else (arg_value, arg_value)
        elif len(arg_value) == 2:
            ret = (1, 1, arg_value[0], arg_value[1]) if ret_four else arg_value
        elif len(arg_value) == 4:
            if not allow_four:
                _raise_message()
            ret = arg_value if ret_four else (arg_value[2], arg_value[3])
        else:
            _raise_message()
        return ret

    validator.check_value_type(arg_name, arg_value, (int, tuple), prim_name)
    ret_value = _get_return_value()
    for item in ret_value:
        if isinstance(item, int) and not isinstance(item, bool) and item > 0:
            continue
        _raise_message()
    return ret_value


def _check_shape(arg_name, arg_value, prim_name):
    """
    Checks whether an shape dims is a positive int elements.
    """

    def _raise_message():
        raise ValueError(f"For '{prim_name}' attr '{arg_name}' dims elements should be positive int numbers, "
                         f"but got {arg_value}")

    validator.check_value_type(arg_name, arg_value, (list, tuple), prim_name)
    for item in arg_value:
        if isinstance(item, int) and item > 0:
            continue
        _raise_message()
    return arg_value


def _update_attr_by_format(arg_value, arg_format):
    """
    If the format is NHWC, should modify the strides or dilation shape.
    """
    ret = arg_value
    if len(arg_value) == 4 and arg_format == "NHWC":
        ret = arg_value[1:] + (1,)

    return ret


class CeLU(Primitive):
    r"""
    Computes CeLU (Continuously differentiable exponential linear units) of input tensors element-wise.

    .. math::

        \text{CeLU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))

    It returns :math:`\max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))` element-wise.

    The picture about CeLU looks like this `CeLU <https://arxiv.org/abs/1704.07483>`_.


    Args:
        alpha (float): The :math:`\alpha` value for the Celu formulation. Default: 1.0

    Inputs:
        - **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
          additional dimensions, with dtype of float16 and float32.

    Outputs:
        Tensor, with the same type and shape as the `input_x`.

    Raises:
        TypeError: If `alpha` is not a float.
        ValueError: If `alpha` has the value of 0.
        TypeError: If `input_x` is not a Tensor.
        TypeError: If the dtype of 'input_x' is neither float16 nor float32.

    Supported Platforms:
        ``Ascend``

    Examples:
        >>> input_x = Tensor(np.array([-2.0, -1.0, 1.0, 2.0]), mindspore.float32)
        >>> celu = ops.CeLU(alpha=1.0)
        >>> output = celu(input_x)
        >>> print(output)
        [-0.86466473 -0.63212055  1.          2.        ]
    """

    @prim_attr_register
    def __init__(self, alpha=1.0):
        """Initialize CeLU"""
        validator.check_value_type("alpha", alpha, [float], self.name)
        validator.check_float(alpha, 0.0, Rel.NE, "alpha", self.name)
        self.alpha = alpha
        self.add_prim_attr('alpha', self.alpha)


[docs]class Flatten(Primitive): r""" Flattens a tensor without changing its batch size on the 0-th axis. Inputs: - **input_x** (Tensor) - Tensor of shape :math:`(N, \ldots)` to be flattened, where :math:`N` is batch size. Outputs: Tensor, the shape of the output tensor is :math:`(N, X)`, where :math:`X` is the product of the remaining dimension. Raises: TypeError: If `input_x` is not a Tensor. ValueError: If length of shape of `input_x` is less than 1. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Tensor(np.ones(shape=[1, 2, 3, 4]), mindspore.float32) >>> flatten = ops.Flatten() >>> output = flatten(input_x) >>> print(output.shape) (1, 24) """ @prim_attr_register def __init__(self): pass
[docs]class AdaptiveAvgPool2D(PrimitiveWithInfer): r""" AdaptiveAvgPool2D operation. This operator applies a 2D adaptive average pooling to an input signal composed of multiple input planes. That is, for any input size, the size of the specified output is H x W. The number of output features is equal to the number of input planes. The input and output data format can be "NCHW" and "CHW". N is the batch size, C is the number of channels, H is the feature height, and W is the feature width. For avg adaptive pool2d: .. math:: \begin{align} h_{start} &= floor(i * H_{in} / H_{out})\\ h_{end} &= ceil((i + 1) * H_{in} / H_{out})\\ w_{start} &= floor(j * W_{in} / W_{out})\\ w_{end} &= ceil((j + 1) * W_{in} / W_{out})\\ Output(i,j) &= \frac{\sum Input[h_{start}:h_{end}, w_{start}:w_{end}]}{(h_{end}- h_{start}) * (w_{end}- w_{start})} \end{align} Args: output_size (Union[int, tuple]): The target output size is H x W. ouput_size can be a tuple, or a single H for H x H, and H and W can be int or None which means the output size is the same as the input. Inputs: - **input_x** (Tensor) - The input of AdaptiveAvgPool2D, which is a 3D or 4D tensor, with float16, float32 or float64 data type. Outputs: Tensor, with the same type as the `input_x`. Shape of the output is `input_x_shape[:len(input_x_shape) - len(out_shape)] + out_shape`. .. math:: out\_shape = \begin{cases} input\_x\_shape[-2] + output\_size[1], & \text{if output_size is (None, w);}\\ output\_size[0] + input\_x\_shape[-1], & \text{if output_size is (h, None);}\\ input\_x\_shape[-2:], & \text{if output_size is (None, None);}\\ (h, h), & \text{if output_size is h;}\\ (h, w), & \text{if output_size is (h, w)} \end{cases} Raises: ValueError: If `output_size` is a tuple and the length of `output_size` is not 2. TypeError: If `input_x` is not a tensor. TypeError: If dtype of `input_x` is not float16, float32 nor float64. ValueError: If the dimension of `input_x` is less than or equal to the dimension of `output_size`. Supported Platforms: ``GPU`` Examples: >>> # case 1: output_size=(None, 2) >>> input_x = Tensor(np.array([[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], ... [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], ... [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]]), mindspore.float32) >>> adaptive_avg_pool_2d = ops.AdaptiveAvgPool2D((None, 2)) >>> output = adaptive_avg_pool_2d(input_x) >>> print(output) [[[1.5 2.5] [4.5 5.5] [7.5 8.5]] [[1.5 2.5] [4.5 5.5] [7.5 8.5]] [[1.5 2.5] [4.5 5.5] [7.5 8.5]]] >>> # case 2: output_size=2 >>> adaptive_avg_pool_2d = ops.AdaptiveAvgPool2D(2) >>> output = adaptive_avg_pool_2d(input_x) >>> print(output) [[[3. 4.] [6. 7.]] [[3. 4.] [6. 7.]] [[3. 4.] [6. 7.]]] >>> # case 3: output_size=(1, 2) >>> adaptive_avg_pool_2d = ops.AdaptiveAvgPool2D((1, 2)) >>> output = adaptive_avg_pool_2d(input_x) >>> print(output) [[[4.5 5.5]] [[4.5 5.5]] [[4.5 5.5]]] """ @prim_attr_register def __init__(self, output_size): """Initialize AdaptiveAvgPool2D.""" validator.check_value_type("output_size", output_size, [int, tuple], self.name) if isinstance(output_size, tuple): validator.check_int(len(output_size), 2, Rel.EQ, 'length of output_size', self.name) self.output_size = (output_size, output_size) if isinstance(self.output_size, int) else output_size def infer_shape(self, x_shape): if len(x_shape) <= len(self.output_size): raise ValueError("input_x {} dimension should be larger than output_size {} " "dimension".format(x_shape, self.output_size)) validator.check_int(len(x_shape), 5, Rel.LT, 'input_x_dimensions', self.name) for input_x_dimension in x_shape: validator.check_int(input_x_dimension, 0, Rel.GT, 'input_x dimension', self.name) zipped = zip(self.output_size, x_shape[-len(self.output_size):]) out_size = [i if i is not None else j for i, j in zipped] for item in out_size: validator.check_value_type("item of output_size", item, [int], self.name) self.add_prim_attr('output_size', out_size) output_shape = x_shape[:len(x_shape) - len(out_size)] + out_size return output_shape def infer_dtype(self, x_dtype): validator.check_tensor_dtype_valid("x_dtype", x_dtype, [mstype.float16, mstype.float32, mstype.float64], self.name) return x_dtype
[docs]class Softmax(Primitive): r""" Softmax operation. Applies the Softmax operation to the input tensor on the specified axis. Suppose a slice in the given axis :math:`x`, then for each element :math:`x_i`, the Softmax function is shown as follows: .. math:: \text{output}(x_i) = \frac{exp(x_i)}{\sum_{j = 0}^{N-1}\exp(x_j)}, where :math:`N` is the length of the tensor. Args: axis (Union[int, tuple]): The axis to perform the Softmax operation. Default: -1. Inputs: - **logits** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of additional dimensions, with float16 or float32 data type. Outputs: Tensor, with the same type and shape as the logits. Raises: TypeError: If `axis` is neither an int nor a tuple. TypeError: If dtype of `logits` is neither float16 nor float32. ValueError: If `axis` is a tuple whose length is less than 1. ValueError: If `axis` is a tuple whose elements are not all in range [-len(logits.shape), len(logits.shape)). Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> logits = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32) >>> softmax = ops.Softmax() >>> output = softmax(logits) >>> print(output) [0.01165623 0.03168492 0.08612854 0.23412167 0.6364086 ] """ @prim_attr_register def __init__(self, axis=-1): """Initialize Softmax.""" self.init_prim_io_names(inputs=['x'], outputs=['output']) validator.check_value_type("axis", axis, [int, tuple], self.name) if isinstance(axis, int): self.add_prim_attr('axis', (axis,)) for item in self.axis: validator.check_value_type("item of axis", item, [int], self.name)
[docs]class LogSoftmax(Primitive): r""" Log Softmax activation function. Applies the Log Softmax function to the input tensor on the specified axis. Supposes a slice in the given axis, :math:`x` for each element :math:`x_i`, the Log Softmax function is shown as follows: .. math:: \text{output}(x_i) = \log \left(\frac{\exp(x_i)} {\sum_{j = 0}^{N-1}\exp(x_j)}\right), where :math:`N` is the length of the Tensor. Args: axis (int): The axis to perform the Log softmax operation. Default: -1. Inputs: - **logits** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of additional dimensions, with float16 or float32 data type. Outputs: Tensor, with the same type and shape as the logits. Raises: TypeError: If `axis` is not an int. TypeError: If dtype of `logits` is neither float16 nor float32. ValueError: If `axis` is not in range [-len(logits.shape), len(logits.shape)). Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> logits = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32) >>> log_softmax = ops.LogSoftmax() >>> output = log_softmax(logits) >>> print(output) [-4.4519143 -3.4519143 -2.4519143 -1.4519144 -0.4519144] """ @prim_attr_register def __init__(self, axis=-1): """Initialize LogSoftmax.""" validator.check_value_type("axis", axis, [int], self.name)
[docs]class Softplus(Primitive): r""" Softplus activation function. Softplus is a smooth approximation to the ReLU function. It can be used to constrain the output of a machine to always be positive. The function is shown as follows: .. math:: \text{output} = \log(1 + \exp(\text{x})), Inputs: - **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of additional dimensions, with float16 or float32 data type. Outputs: Tensor, with the same type and shape as the `input_x`. Raises: TypeError: If `input_x` is not a Tensor. TypeError: If the dtype of `input_x` is neither float16 nor float32. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32) >>> softplus = ops.Softplus() >>> output = softplus(input_x) >>> print(output) [1.3132615 2.126928 3.0485873 4.01815 5.0067153] """ @prim_attr_register def __init__(self): """Initialize Softplus""" self.init_prim_io_names(inputs=['x'], outputs=['output'])
[docs]class Softsign(PrimitiveWithInfer): r""" Softsign activation function. The function is shown as follows: .. math:: \text{SoftSign}(x) = \frac{x}{ 1 + |x|} Inputs: - **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of additional dimensions, with float16 or float32 data type. Outputs: Tensor, with the same type and shape as the `input_x`. Raises: TypeError: If `input_x` is not a Tensor. TypeError: If dtype of `input_x` is neither float16 nor float32. Supported Platforms: ``Ascend`` Examples: >>> input_x = Tensor(np.array([0, -1, 2, 30, -30]), mindspore.float32) >>> softsign = ops.Softsign() >>> output = softsign(input_x) >>> print(output) [ 0. -0.5 0.6666667 0.9677419 -0.9677419] """ @prim_attr_register def __init__(self): """Initialize Softsign""" self.init_prim_io_names(inputs=['x'], outputs=['output']) def infer_shape(self, input_x): return input_x def infer_dtype(self, input_x): validator.check_tensor_dtype_valid('input_x', input_x, [mstype.float16, mstype.float32], self.name) return input_x
[docs]class ReLU(Primitive): r""" Computes ReLU (Rectified Linear Unit activation function) of input tensors element-wise. It returns max(x, 0) element-wise. Specially, the neurons with the negative output will be suppressed and the active neurons will stay the same. .. math:: ReLU(x) = (x)^+ = max(0, x) Note: In general, this operator is more commonly used. The difference from `ReLuV2` is that the `ReLuV2` will output one more Mask. Inputs: - **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of additional dimensions, data type is `number <https://www.mindspore.cn/docs/api/en/r1.6/api_python/mindspore.html#mindspore.dtype>`_. Outputs: Tensor of shape :math:`(N, *)`, with the same type and shape as the `input_x`. Raises: TypeError: If dtype of `input_x` is not a number. TypeError: If `input_x` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) >>> relu = ops.ReLU() >>> output = relu(input_x) >>> print(output) [[0. 4. 0.] [2. 0. 9.]] """ @prim_attr_register def __init__(self): """Initialize ReLU""" self.init_prim_io_names(inputs=['x'], outputs=['output'])
[docs]class Mish(PrimitiveWithInfer): r""" Computes MISH(A Self Regularized Non-Monotonic Neural Activation Function) of input tensors element-wise. The function is shown as follows: .. math:: \text{output} = x * \tan(\log(1 + \exp(\text{x}))) See more details in `A Self Regularized Non-Monotonic Neural Activation Function <https://arxiv.org/abs/1908.08681>`_. Inputs: - **x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of additional dimensions, with float16 or float32 data type. Outputs: Tensor, with the same type and shape as the `x`. Supported Platforms: ``Ascend`` Raises: TypeError: If dtype of `x` is neither float16 nor float32. Examples: >>> x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) >>> mish = ops.Mish() >>> output = mish(x) >>> print(output) [[-0.30273438 3.9974136 -0.015625] [ 1.9439697 -0.02929688 8.999999]] """ @prim_attr_register def __init__(self): """Initialize Mish""" self.init_prim_io_names(inputs=['x'], outputs=['output']) def infer_shape(self, x_shape): return x_shape def infer_dtype(self, x_dtype): validator.check_tensor_dtype_valid('x', x_dtype, [mstype.float16, mstype.float32], self.name) return x_dtype
[docs]class SeLU(PrimitiveWithInfer): r""" Computes SeLU (scaled exponential Linear Unit) of input tensors element-wise. The activation function is defined as: .. math:: E_{i} = scale * \begin{cases} x_{i}, &\text{if } x_{i} \geq 0; \cr \text{alpha} * (\exp(x_i) - 1), &\text{otherwise.} \end{cases} where :math:`alpha` and :math:`scale` are pre-defined constants(:math:`alpha=1.67326324` and :math:`scale=1.05070098`). See more details in `Self-Normalizing Neural Networks <https://arxiv.org/abs/1706.02515>`_. Inputs: - **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of additional dimensions, with float16 or float32 data type. Outputs: Tensor, with the same type and shape as the `input_x`. Supported Platforms: ``Ascend`` Raises: TypeError: If dtype of `input_x` is neither float16 nor float32. Examples: >>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) >>> selu = ops.SeLU() >>> output = selu(input_x) >>> print(output) [[-1.1113307 4.202804 -1.7575096] [ 2.101402 -1.7462534 9.456309 ]] """ @prim_attr_register def __init__(self): """Initialize SeLU""" self.init_prim_io_names(inputs=['x'], outputs=['output']) def infer_shape(self, x_shape): return x_shape def infer_dtype(self, x_dtype): valid_dtypes = [mstype.float16, mstype.float32] validator.check_tensor_dtype_valid('x', x_dtype, valid_dtypes, self.name) return x_dtype
[docs]class ReLU6(PrimitiveWithCheck): r""" Computes ReLU (Rectified Linear Unit) upper bounded by 6 of input tensors element-wise. .. math:: \text{ReLU6}(x) = \min(\max(0,x), 6) It returns :math:`\min(\max(0,x), 6)` element-wise. Inputs: - **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of additional dimensions, with float16 or float32 data type. Outputs: Tensor, with the same type and shape as the `input_x`. Raises: TypeError: If dtype of `input_x` is neither float16 nor float32. TypeError: If `input_x` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) >>> relu6 = ops.ReLU6() >>> result = relu6(input_x) >>> print(result) [[0. 4. 0.] [2. 0. 6.]] """ @prim_attr_register def __init__(self): """Initialize ReLU6""" self.init_prim_io_names(inputs=['x'], outputs=['output']) def check_shape(self, input_x): pass def check_dtype(self, input_x): validator.check_tensor_dtype_valid('input_x', input_x, (mstype.float16, mstype.float32), self.name)
[docs]class ReLUV2(Primitive): r""" Rectified Linear Unit activation function. It returns element-wise :math:`\max(0, x)`, specially, the neurons with the negative output will be suppressed and the active neurons will stay the same. .. math:: \text{ReLU}(x) = (x)^+ = \max(0, x) Note: The difference from `ReLu` is that the operator will output one more Mask, and the kernel of the operator is different from `ReLu`. Inputs: - **input_x** (Tensor) - The input tensor must be a 4-D tensor. Outputs: - **output** (Tensor) - Has the same type and shape as the `input_x`. - **mask** (Tensor) - A tensor whose data type must be uint8. Raises: TypeError: If `input_x` is not a Tensor. ValueError: If shape of `input_x` is not 4-D. Supported Platforms: ``Ascend`` Examples: >>> input_x = Tensor(np.array([[[[1, -2], [-3, 4]], [[-5, 6], [7, -8]]]]), mindspore.float32) >>> relu_v2 = ops.ReLUV2() >>> output, mask= relu_v2(input_x) >>> print(output) [[[[1. 0.] [0. 4.]] [[0. 6.] [7. 0.]]]] >>> print(mask) [[[[[1 0] [2 0]] [[2 0] [1 0]]]]] """ @prim_attr_register def __init__(self): """Initialize ReLUV2""" self.init_prim_io_names(inputs=['x'], outputs=['output', 'mask'])
[docs]class Elu(PrimitiveWithInfer): r""" Computes exponential linear: .. math:: \text{ELU}(x)= \left\{ \begin{array}{align} \alpha(e^{x} - 1) & \text{if } x \le 0\\ x & \text{if } x \gt 0\\ \end{array}\right. The data type of input tensor must be float. Args: alpha (float): The coefficient of negative factor whose type is float, only support '1.0' currently. Default: 1.0. Inputs: - **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of additional dimensions, with float16 or float32 data type. Outputs: Tensor, has the same shape and data type as `input_x`. Raises: TypeError: If `alpha` is not a float. TypeError: If dtype of `input_x` is neither float16 nor float32. ValueError: If `alpha` is not equal to 1.0. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) >>> elu = ops.Elu() >>> output = elu(input_x) >>> print(output) [[-0.63212055 4. -0.99966455] [ 2. -0.99326205 9. ]] """ @prim_attr_register def __init__(self, alpha=1.0): """Initialize Elu""" validator.check_value_type("alpha", alpha, [float], self.name) validator.check_number("alpha", alpha, 1.0, Rel.EQ, self.name) def infer_shape(self, input_x): return input_x def infer_dtype(self, input_x): validator.check_tensor_dtype_valid('input_x', input_x, mstype.float_type, self.name) return input_x
[docs]class HSwish(PrimitiveWithInfer): r""" Hard swish activation function. Applies hswish-type activation element-wise. The input is a Tensor with any valid shape. Hard swish is defined as: .. math:: \text{hswish}(x_{i}) = x_{i} * \frac{ReLU6(x_{i} + 3)}{6}, where :math:`x_i` is an element of the input Tensor. Inputs: - **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of additional dimensions, with float16 or float32 data type. Outputs: Tensor, with the same type and shape as the `input_x`. Raises: TypeError: If `input_x` is not a Tensor. TypeError: If dtype of `input_x` is neither float16 nor float32. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> hswish = ops.HSwish() >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) >>> result = hswish(input_x) >>> print(result) [-0.3333 -0.3333 0 1.666 0.6665] """ @prim_attr_register def __init__(self): """Initialize HSwish.""" self.init_prim_io_names(inputs=['x'], outputs=['output']) def infer_shape(self, xshape): return xshape def infer_dtype(self, x_dtype): validator.check_tensor_dtype_valid("x", x_dtype, (mstype.float16, mstype.float32), self.name) return x_dtype
[docs]class Sigmoid(Primitive): r""" Sigmoid activation function. Computes Sigmoid of input element-wise. The Sigmoid function is defined as: .. math:: \text{sigmoid}(x_i) = \frac{1}{1 + \exp(-x_i)} where :math:`x_i` is an element of the input Tensor. Inputs: - **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of additional dimensions, with float16 or float32 data type. Outputs: Tensor, with the same type and shape as the input_x. Raises: TypeError: If dtype of `input_x` is neither float16 nor float32. TypeError: If `input_x` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32) >>> sigmoid = ops.Sigmoid() >>> output = sigmoid(input_x) >>> print(output) [0.7310586 0.880797 0.95257413 0.98201376 0.9933072 ] """ @prim_attr_register def __init__(self): """Initialize Sigmoid.""" self.init_prim_io_names(inputs=['x'], outputs=['output'])
[docs]class HSigmoid(Primitive): r""" Hard sigmoid activation function. Applies hard sigmoid activation element-wise. The input is a Tensor with any valid shape. Hard sigmoid is defined as: .. math:: \text{hsigmoid}(x_{i}) = max(0, min(1, \frac{x_{i} + 3}{6})), where :math:`x_i` is an element of the input Tensor. Inputs: - **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of additional dimensions. Outputs: Tensor, with the same type and shape as the `input_x`. Raises: TypeError: If `input_x` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> hsigmoid = ops.HSigmoid() >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) >>> result = hsigmoid(input_x) >>> print(result) [0.3333 0.1666 0.5 0.8335 0.6665] """ @prim_attr_register def __init__(self): """Initialize HSigmoid.""" self.init_prim_io_names(inputs=['input_x'], outputs=['output'])
[docs]class Tanh(Primitive): r""" Tanh activation function. Computes hyperbolic tangent of input element-wise. The Tanh function is defined as: .. math:: tanh(x_i) = \frac{\exp(x_i) - \exp(-x_i)}{\exp(x_i) + \exp(-x_i)} = \frac{\exp(2x_i) - 1}{\exp(2x_i) + 1}, where :math:`x_i` is an element of the input Tensor. Inputs: - **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of additional dimensions, with float16 or float32 data type. Outputs: Tensor, with the same type and shape as the `input_x`. Raises: TypeError: If dtype of `input_x` is neither float16 nor float32. TypeError: If `input_x` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32) >>> tanh = ops.Tanh() >>> output = tanh(input_x) >>> print(output) [0.7615941 0.9640276 0.9950547 0.9993293 0.9999092] """ @prim_attr_register def __init__(self): """Initialize Tanh""" self.init_prim_io_names(inputs=['input_x'], outputs=['output'])
class FusedBatchNorm(Primitive): r""" The FusedBatchNorm interface is deprecated, please use the BatchNorm interface. """ def __init__(self, mode=0, epsilon=1e-5, momentum=0.1): raise TypeError("The FusedBatchNorm interface is deprecated, please use the BatchNorm interface.") class FusedBatchNormEx(PrimitiveWithCheck): r""" The FusedBatchNormEx interface is deprecated, please use the BatchNorm interface. """ def __init__(self, mode=0, epsilon=1e-5, momentum=0.1, data_format="NCHW"): raise TypeError("FusedBatchnormEx interface is deprecated, please use BatchNorm interface.") class InstanceNorm(PrimitiveWithInfer): r""" Instance Normalization over a 4D input. This operator applies Instance Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper `Instance Normalization: The Missing Ingredient for Fast Stylization <https://arxiv.org/abs/1607.08022>`_. It rescales and recenters the feature using a mini-batch of data and the learned parameters which can be described in the following formula. .. math:: y = \frac{x - mean}{\sqrt{variance + \epsilon}} * \gamma + \beta where :math:`\gamma` is scale, :math:`\beta` is bias, :math:`\epsilon` is epsilon. Args: epsilon (float): A small value added for numerical stability. Default: 1e-5. momentum (float): The hyper parameter to compute moving average for running_mean and running_var (e.g. :math:`new\_running\_mean = momentum * running\_mean + (1 - momentum) * current\_mean`). Momentum value must be [0, 1]. Default: 0.1. Inputs: - **input_x** (Tensor) - The input of InstanceNorm, Tensor of shape :math:`(N, C)`, data type: float16 or float32. - **gamma** (Parameter) - Scale, Tensor of shape :math:`(C,)`, data type: float32. - **beta** (Parameter) - Bias, Tensor of shape :math:`(C,)`, data type: float32. - **mean** (Parameter) - Mean value, Tensor of shape :math:`(C,)`, data type: float32. - **variance** (Parameter) - Variance value, Tensor of shape :math:`(C,)`, data type: float32. Outputs: Tuple of 3 Tensors, the normalized input, the updated parameters. - **output_x** (Tensor) - The output of InstanceNorm, same type and shape as the `input_x`. - **updated_moving_mean** (Tensor) - Updated mean value, Tensor of shape :math:`(NC,)`, data type: float32. - **updated_moving_variance** (Tensor) - Updated variance value, Tensor of shape :math:`(NC,)`, data type: float32. Supported Platforms: ``GPU`` Raises: TypeError: If `epsilon` or `momentum` is not a float. TypeError: If dtype of `input_x` is neither float16 nor float32. TypeError: If dtype of `gamma`, `beta` or `mean` is not float32. ValueError: If `epsilon` is not in the range of [0, 1). ValueError: If `momentum` is not in the range of [0, 1]. Examples: >>> class InstanceNormNet(nn.Cell): >>> def __init__(self): >>> super(InstanceNormNet, self).__init__() >>> self.instance_norm = ops.InstanceNorm() >>> self.gamma = Parameter(Tensor(np.ones([64]), mindspore.float32), name="gamma") >>> self.beta = Parameter(Tensor(np.ones([64]), mindspore.float32), name="beta") >>> self.mean = Parameter(Tensor(np.ones([64]), mindspore.float32), name="mean") >>> self.variance = Parameter(Tensor(np.ones([64]), mindspore.float32), name="variance") >>> >>> def construct(self, input_x): >>> out = self.instance_norm(input_x, self.gamma, self.beta, self.mean, self.variance) >>> return out >>> >>> input_x = Tensor(np.ones([128, 64, 32, 64]), mindspore.float32) >>> net = InstanceNormNet() >>> output = net(input_x) >>> result = output[0].shape >>> print(result) (128, 64, 32, 64) """ __mindspore_signature__ = ( sig.make_sig('input_x', dtype=sig.sig_dtype.T2), sig.make_sig('gamma', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('beta', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('mean', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('variance', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), ) @prim_attr_register def __init__(self, epsilon=1e-5, momentum=0.1): """Initialize InstanceNorm.""" self.init_prim_io_names(inputs=['x', 'gamma', 'beta', 'mean', 'variance'], outputs=['y', 'save_mean', 'save_variance']) self.epsilon = validator.check_float_range(epsilon, 0, 1, Rel.INC_RIGHT, 'epsilon', self.name) self.momentum = validator.check_float_range(momentum, 0, 1, Rel.INC_BOTH, 'momentum', self.name) self._update_parameter = True def infer_shape(self, input_x, gamma, beta, mean, variance): input_shape_norm = input_x validator.check_equal_int(len(gamma), 1, "gamma rank", self.name) validator.check("gamma shape", gamma, "beta shape", beta, Rel.EQ, self.name) validator.check("gamma shape[0]", gamma[0], "input channel", input_shape_norm[1], Rel.EQ, self.name) validator.check_equal_int(len(mean), 1, "mean rank", self.name) validator.check("mean shape", mean, "variance shape", variance, Rel.EQ, self.name) validator.check("mean shape", mean, "gamma shape", gamma, Rel.EQ, self.name) save_mean_shape = gamma save_mean_shape[0] = save_mean_shape[0] * input_shape_norm[0] return input_x, save_mean_shape, save_mean_shape def infer_dtype(self, input_x, gamma, beta, mean, variance): validator.check_tensor_dtype_valid("input_x", input_x, [mstype.float16, mstype.float32], self.name) args = {"gamma": gamma, "beta": beta} validator.check_tensors_dtypes_same_and_valid(args, [mstype.float32], self.name) args_moving = {"mean": mean, "variance": variance} valid_dtypes = [mstype.tensor_type(mstype.float32)] validator.check_types_same_and_valid(args_moving, valid_dtypes, self.name) return input_x, gamma, gamma class BNTrainingReduce(PrimitiveWithInfer): """ The BNTrainingReduce interface is deprecated, please use the :class:`mindspore.ops.BatchNorm` instead. Supported Platforms: Deprecated """ @deprecated("1.5", "ops.BatchNorm", False) @prim_attr_register def __init__(self): """Initialize BNTrainingReduce.""" self.init_prim_io_names(inputs=['x'], outputs=['sum', 'square_sum']) def infer_shape(self, x_shape): validator.check_equal_int(len(x_shape), 4, "x rank", self.name) return [x_shape[1]], [x_shape[1]] def infer_dtype(self, x_type): validator.check_tensor_dtype_valid("x", x_type, [mstype.float16, mstype.float32], self.name) return x_type, x_type class BNTrainingUpdate(PrimitiveWithInfer): """ The BNTrainingUpdate interface is deprecated, please use the :class:`mindspore.ops.BatchNorm` instead. Supported Platforms: Deprecated """ @deprecated("1.5", "ops.BatchNorm", False) @prim_attr_register def __init__(self, isRef=True, epsilon=1e-5, factor=0.1): """Initialize BNTrainingUpdate.""" self.init_prim_io_names(inputs=['x', 'sum', 'square_sum', 'scale', 'b', 'mean', 'variance'], outputs=['y', 'running_mean', 'running_variance', 'save_mean', 'save_inv_variance']) validator.check_value_type("isRef", isRef, [bool], self.name) validator.check_value_type("epsilon", epsilon, [float], self.name) validator.check_value_type("factor", factor, [float], self.name) self.epsilon = validator.check_float_range(epsilon, 0, 1, Rel.INC_RIGHT, 'epsilon', 'BNTrainingUpdate') self.factor = validator.check_float_range(factor, 0, 1, Rel.INC_BOTH, 'factor', 'BNTrainingUpdate') def infer_shape(self, x, sum, square_sum, scale, b, mean, variance): validator.check_equal_int(len(x), 4, "x rank", self.name) validator.check_equal_int(len(sum), 1, "sum rank", self.name) validator.check_equal_int(len(square_sum), 1, "square_sum rank", self.name) validator.check_equal_int(len(scale), 1, "scale rank", self.name) validator.check_equal_int(len(b), 1, "b rank", self.name) validator.check_equal_int(len(mean), 1, "mean rank", self.name) validator.check_equal_int(len(variance), 1, "variance rank", self.name) validator.check("sum shape", sum[0], "x_shape[1]", x[1], Rel.EQ, self.name) validator.check("square_sum shape", square_sum, "sum", sum, Rel.EQ, self.name) validator.check("scale shape", scale[0], "x_shape[1]", x[1], Rel.EQ, self.name) validator.check("offset shape", b[0], "x_shape[1]", x[1], Rel.EQ, self.name) validator.check("mean shape", mean[0], "x_shape[1]", x[1], Rel.EQ, self.name) validator.check("variance shape", variance[0], "x_shape[1]", x[1], Rel.EQ, self.name) return x, variance, variance, variance, variance def infer_dtype(self, x, sum, square_sum, scale, b, mean, variance): tuple(map(partial(validator.check_tensor_dtype_valid, valid_dtypes=(mstype.float16, mstype.float32), prim_name=self.name), ("x", "sum", "square_sum", "scale", "b", "mean", "variance"), (x, sum, square_sum, scale, b, mean, variance))) return x, variance, variance, variance, variance
[docs]class BatchNorm(PrimitiveWithInfer): r""" Batch Normalization for input data and updated parameters. Batch Normalization is widely used in convolutional neural networks. This operation applies Batch Normalization over inputs to avoid internal covariate shift as described in the paper `Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift <https://arxiv.org/abs/1502.03167>`_. It rescales and recenters the features using a mini-batch of data and the learned parameters can be described in the following formula, .. math:: y = \frac{x - mean}{\sqrt{variance + \epsilon}} * \gamma + \beta where :math:`\gamma` is scale, :math:`\beta` is bias, :math:`\epsilon` is epsilon, :math:`mean` is the mean of x, :math:`variance` is the variance of x. .. warning:: - If the operation is used for inference, and outputs "reserve_space_1" and "reserve_space_2" are available, then "reserve_space_1" has the same value as "mean" and "reserve_space_2" has the same value as "variance". - For Ascend 310, the result accuracy fails to reach 1‰ due to the square root instruction. Args: is_training (bool): If `is_training` is True, `mean` and `variance` are computed during training. If `is_training` is False, they're loaded from checkpoint during inference. Default: False. epsilon (float): A small value added for numerical stability. Default: 1e-5. momentum (float): The hyper parameter to compute moving average for running_mean and running_var (e.g. :math:`new\_running\_mean = (1 - momentum) * running\_mean + momentum * current\_mean`). Momentum value must be [0, 1]. Default: 0.1. data_format (str): The optional value for data format, is 'NHWC' or 'NCHW'. Default: "NCHW". Inputs: If `is_training` is False, inputs are Tensors. - **input_x** (Tensor) - Tensor of shape :math:`(N, C)`, with float16 or float32 data type. - **scale** (Tensor) - Tensor of shape :math:`(C,)`, with float16 or float32 data type. - **bias** (Tensor) - Tensor of shape :math:`(C,)`, has the same data type with `scale`. - **mean** (Tensor) - Tensor of shape :math:`(C,)`, has the same data type with `scale`. - **variance** (Tensor) - Tensor of shape :math:`(C,)`, has the same data type with `scale`. If `is_training` is True, `scale`, `bias`, `mean` and `variance` are Parameters. - **input_x** (Tensor) - Tensor of shape :math:`(N, C)`, with float16 or float32 data type. - **scale** (Parameter) - Parameter of shape :math:`(C,)`, with float16 or float32 data type. - **bias** (Parameter) - Parameter of shape :math:`(C,)`, has the same data type with `scale`. - **mean** (Parameter) - Parameter of shape :math:`(C,)`, has the same data type with `scale`. - **variance** (Parameter) - Parameter of shape :math:`(C,)`, has the same data type with `scale`. Outputs: Tuple of 5 Tensors, the normalized inputs and the updated parameters. - **output_x** (Tensor) - The same type and shape as the input_x. The shape is :math:`(N, C)`. - **updated_scale** (Tensor) - Tensor of shape :math:`(C,)`. - **updated_bias** (Tensor) - Tensor of shape :math:`(C,)`. - **reserve_space_1** (Tensor) - Tensor of shape :math:`(C,)`. - **reserve_space_2** (Tensor) - Tensor of shape :math:`(C,)`. Raises: TypeError: If `is_training` is not a bool. TypeError: If dtype of `epsilon` or `momentum` is not float. TypeError: If `data_format` is not a str. TypeError: If `input_x`, `scale`, `bias`, `mean` or `variance` is not a Tensor. TypeError: If dtype of `input_x`, `scale` is neither float16 nor float32. Supported Platforms: ``Ascend`` ``CPU`` ``GPU`` Examples: >>> input_x = Tensor(np.ones([2, 2]), mindspore.float32) >>> scale = Tensor(np.ones([2]), mindspore.float32) >>> bias = Tensor(np.ones([2]), mindspore.float32) >>> mean = Tensor(np.ones([2]), mindspore.float32) >>> variance = Tensor(np.ones([2]), mindspore.float32) >>> batch_norm = ops.BatchNorm() >>> output = batch_norm(input_x, scale, bias, mean, variance) >>> print(output[0]) [[1. 1.] [1. 1.]] """ __mindspore_signature__ = ( sig.make_sig('input_x', dtype=sig.sig_dtype.T1), sig.make_sig('scale', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T2), sig.make_sig('bias', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T2), sig.make_sig('mean', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T3), sig.make_sig('variance', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T3) ) @prim_attr_register def __init__(self, is_training=False, epsilon=1e-5, momentum=0.1, data_format="NCHW"): """Initialize BatchNorm.""" if is_training is False: self.set_signatures(tuple()) validator.check_value_type('is_training', is_training, (bool,), self.name) validator.check_float_range(epsilon, 0, 1, Rel.INC_RIGHT, 'epsilon', self.name) validator.check_float_range(momentum, 0, 1, Rel.INC_BOTH, 'momentum', self.name) self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.name) if context.get_context("device_target") != "GPU" and self.format == "NHWC": raise ValueError(f"For '{self.name}', the 'NHWC' format is only supported in GPU target, " f"but got the 'data_format' is {self.format} and " f"the platform is {context.get_context('device_target')}.") self.add_prim_attr('data_format', self.format) self.init_prim_io_names(inputs=['x', 'scale', 'offset', 'mean', 'variance'], outputs=['y', 'batch_mean', 'batch_variance', 'reserve_space_1', 'reserve_space_2']) def infer_shape(self, input_x, scale, bias, mean, variance): input_x_channel = input_x[-1] if self.format == "NHWC" else input_x[1] validator.check_equal_int(len(scale), 1, "scale rank", self.name) validator.check("scale shape", scale, "bias shape", bias, Rel.EQ, self.name) validator.check("scale shape[0]", scale[0], "input_x channel", input_x_channel, Rel.EQ, self.name) if not self.is_training: validator.check_equal_int(len(mean), 1, "mean rank", self.name) validator.check("mean shape", mean, "variance shape", variance, Rel.EQ, self.name) validator.check("mean shape", mean, "scale shape", scale, Rel.EQ, self.name) return input_x, scale, scale, scale, scale def infer_dtype(self, input_x, scale, bias, mean, variance): validator.check_tensor_dtype_valid("input_x", input_x, [mstype.float16, mstype.float32], self.name) args = {"scale": scale, "bias": bias, "mean": mean, "variance": variance} validator.check_tensors_dtypes_same_and_valid(args, [mstype.float16, mstype.float32], self.name) return input_x, mstype.float32, mstype.float32, mstype.float32, mstype.float32
[docs]class Conv2D(Primitive): r""" 2D convolution layer. Applies a 2D convolution over an input tensor which is typically of shape :math:`(N, C_{in}, H_{in}, W_{in})`, where :math:`N` is batch size, :math:`C` is channel number, :math:`H` is height, :math:`W` is width, :math:`X_i` is the :math:`i^{th}` input value and :math:`b_i` indicates the deviation value of the :math:`i^{th}` input value. For each batch of shape :math:`(C_{in}, H_{in}, W_{in})`, the formula is defined as: .. math:: out_j = \sum_{i=0}^{C_{in} - 1} ccor(W_{ij}, X_i) + b_j, where :math:`ccor` is the cross correlation operator, :math:`C_{in}` is the input channel number, :math:`j` ranges from :math:`0` to :math:`C_{out} - 1`, :math:`W_{ij}` corresponds to the :math:`i`-th channel of the :math:`j`-th filter and :math:`out_{j}` corresponds to the :math:`j`-th channel of the output. :math:`W_{ij}` is a slice of kernel and it has shape :math:`(\text{kernel_size[0]}, \text{kernel_size[1]})`, where :math:`\text{kernel_size[0]}` and :math:`\text{kernel_size[1]}` are the height and width of the convolution kernel. The full kernel has shape :math:`(C_{out}, C_{in} / \text{group}, \text{kernel_size[0]}, \text{kernel_size[1]})`, where group is the group number to split the input in the channel dimension. If the 'pad_mode' is set to be "valid", the output height and width will be :math:`\left \lfloor{1 + \frac{H_{in} + \text{padding[0]} + \text{padding[1]} - \text{kernel_size[0]} - (\text{kernel_size[0]} - 1) \times (\text{dilation[0]} - 1) }{\text{stride[0]}}} \right \rfloor` and :math:`\left \lfloor{1 + \frac{W_{in} + \text{padding[2]} + \text{padding[3]} - \text{kernel_size[1]} - (\text{kernel_size[1]} - 1) \times (\text{dilation[1]} - 1) }{\text{stride[1]}}} \right \rfloor` respectively. Where :math:`dilation` is Spacing between kernel elements, :math:`stride` is The step length of each step, :math:`padding` is zero-padding added to both sides of the input. The first introduction can be found in paper `Gradient Based Learning Applied to Document Recognition <http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf>`_. More detailed introduction can be found here: http://cs231n.github.io/convolutional-networks/. Args: out_channel (int): The number of output channel :math:`C_{out}`. kernel_size (Union[int, tuple[int]]): The data type is int or a tuple of 2 integers. Specifies the height and width of the 2D convolution window. Single int means the value is for both the height and the width of the kernel. A tuple of 2 ints means the first value is for the height and the other is for the width of the kernel. mode (int): Modes for different convolutions. 0 Math convolution, 1 cross-correlation convolution , 2 deconvolution, 3 depthwise convolution. Default: 1. pad_mode (str): Specifies padding mode. The optional values are "same", "valid" and "pad". Default: "valid". - same: Adopts the way of completion. The height and width of the output will be equal to the input `x` divided by stride. The padding will be evenly calculated in top and bottom, left and right possiblily. Otherwise, the last extra padding will be calculated from the bottom and the right side. If this mode is set, `pad` must be 0. - valid: Adopts the way of discarding. The possible largest height and width of output will be returned without padding. Extra pixels will be discarded. If this mode is set, `pad` must be 0. - pad: Implicit paddings on both sides of the input `x`. The number of `pad` will be padded to the input Tensor borders. `pad` must be greater than or equal to 0. pad (Union(int, tuple[int])): Implicit paddings on both sides of the input `x`. If `pad` is one integer, the paddings of top, bottom, left and right are the same, equal to pad. If `pad` is a tuple with four integers, the paddings of top, bottom, left and right will be equal to pad[0], pad[1], pad[2], and pad[3] accordingly. Default: 0. stride (Union(int, tuple[int])): The distance of kernel moving, an int number that represents the height and width of movement are both strides, or a tuple of two int numbers that represent height and width of movement respectively. Default: 1. dilation (Union(int, tuple[int])): The data type is int or a tuple of 2 integers. Specifies the dilation rate to use for dilated convolution. If set to be :math:`k > 1`, there will be :math:`k - 1` pixels skipped for each sampling location. Its value must be greater than or equal to 1 and bounded by the height and width of the input `x`. Default: 1. group (int): Splits input into groups. Default: 1. data_format (str): The optional value for data format, is 'NHWC' or 'NCHW'. Default: "NCHW". Inputs: - **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`. - **weight** (Tensor) - Set size of kernel is :math:`(\text{kernel_size[0]}, \text{kernel_size[1]})`, then the shape is :math:`(C_{out}, C_{in}, \text{kernel_size[0]}, \text{kernel_size[1]})`. Outputs: Tensor, the value that applied 2D convolution. The shape is :math:`(N, C_{out}, H_{out}, W_{out})`. Raises: TypeError: If `kernel_size`, `stride`, `pad` or `dilation` is neither an int nor a tuple. TypeError: If `out_channel` or `group` is not an int. ValueError: If `kernel_size`, `stride` or `dilation` is less than 1. ValueError: If `pad_mode` is not one of 'same', 'valid' or 'pad'. ValueError: If `pad` is a tuple whose length is not equal to 4. ValueError: If `pad_mode` it not equal to 'pad' and `pad` is not equal to (0, 0, 0, 0). ValueError: If `data_format` is neither 'NCHW' nor 'NHWC'. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> x = Tensor(np.ones([10, 32, 32, 32]), mindspore.float32) >>> weight = Tensor(np.ones([32, 32, 3, 3]), mindspore.float32) >>> conv2d = ops.Conv2D(out_channel=32, kernel_size=3) >>> output = conv2d(x, weight) >>> print(output.shape) (10, 32, 30, 30) """ @prim_attr_register def __init__(self, out_channel, kernel_size, mode=1, pad_mode="valid", pad=0, stride=1, dilation=1, group=1, data_format="NCHW"): """Initialize Conv2D""" self.init_prim_io_names(inputs=['x', 'w'], outputs=['output']) self.kernel_size = _check_positive_int_or_tuple('kernel_size', kernel_size, self.name) self.stride = _check_positive_int_or_tuple('stride', stride, self.name, allow_four=True, ret_four=True) self.add_prim_attr('stride', self.stride) self.dilation = _check_positive_int_or_tuple('dilation', dilation, self.name, allow_four=True, ret_four=True) self.add_prim_attr('dilation', self.dilation) validator.check_value_type('pad', pad, (int, tuple), self.name) validator.check_value_type('pad_mode', pad_mode, [str], self.name) if isinstance(pad, int): pad = (pad,) * 4 else: validator.check_equal_int(len(pad), 4, 'pad size', self.name) self.pad_mode = validator.check_string(pad_mode, ['valid', 'same', 'pad'], 'pad_mode', self.name) if pad_mode != 'pad' and pad != (0, 0, 0, 0): raise ValueError(f"For '{self.name}', the 'pad' must be zero when 'pad_mode' is not 'pad', " f"but got 'pad': {self.pad} and 'pad_mode': {self.pad_mode}.") self.add_prim_attr("pad", pad) self.padding = pad if self.pad_mode == 'pad': for item in pad: validator.check_non_negative_int(item, 'pad item', self.name) self.mode = validator.check_equal_int(mode, 1, 'mode', self.name) self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.name) if context.get_context("device_target") != "GPU" and self.format == "NHWC": raise ValueError(f"For '{self.name}', the 'NHWC' format is only supported in GPU target, " f"but got the 'data_format' is {self.format} " f"and platform is {context.get_context('device_target')}.") self.add_prim_attr('data_format', self.format) self.out_channel = validator.check_positive_int(out_channel, 'out_channel', self.name) self.group = validator.check_positive_int(group, 'group', self.name) self.add_prim_attr('groups', self.group)
[docs]class DepthwiseConv2dNative(PrimitiveWithInfer): r""" DepthwiseConv2dNative will be deprecated in the future. Please use :class:`mindspore.nn.Conv2d` instead. Supported Platforms: Deprecated """ @prim_attr_register def __init__(self, channel_multiplier, kernel_size, mode=3, pad_mode="valid", pad=0, stride=1, dilation=1, group=1): """Initialize DepthwiseConv2dNative""" logger.warning("WARN_DEPRECATED: The usage of DepthwiseConv2dNative is deprecated." " Please use nn.Conv2D.") self.init_prim_io_names(inputs=['x', 'w'], outputs=['output']) self.kernel_size = _check_positive_int_or_tuple('kernel_size', kernel_size, self.name) self.stride = _check_positive_int_or_tuple('stride', stride, self.name) if self.stride[0] != self.stride[1]: raise ValueError("The height and width of 'stride' should be equal," f"but got height:{self.stride[0]}, width:{self.stride[1]}") self.add_prim_attr('stride', (1, 1, self.stride[0], self.stride[1])) self.dilation = _check_positive_int_or_tuple('dilation', dilation, self.name) if self.dilation[0] != self.dilation[1]: raise ValueError("The height and width of 'dilation' should be equal," f"but got height:{self.dilation[0]}, width:{self.dilation[1]}") self.add_prim_attr('dilation', (1, 1, self.dilation[0], self.dilation[1])) validator.check_value_type('pad', pad, (int, tuple), self.name) validator.check_value_type('pad_mode', pad_mode, [str], self.name) if isinstance(pad, int): pad = (pad,) * 4 else: validator.check_equal_int(len(pad), 4, 'pad size', self.name) self.pad_mode = validator.check_string(pad_mode.lower(), ['valid', 'same', 'pad'], 'pad_mode', self.name) if pad_mode != 'pad' and pad != (0, 0, 0, 0): raise ValueError(f"For '{self.name}', the 'pad' must be zero or (0, 0, 0, 0) when 'pad_mode' " f"is not \"pad\", but got 'pad' is {self.pad} and 'pad_mode' is {pad_mode}.") self.add_prim_attr("pad", pad) self.padding = pad if self.pad_mode == 'pad': for item in pad: validator.check_non_negative_int(item, 'pad item', self.name) self.mode = validator.check_equal_int(mode, 3, "mode", self.name) self.add_prim_attr('data_format', "NCHW") self.channel_multiplier = validator.check_positive_int(channel_multiplier, "channel_multiplier", self.name) self.group = validator.check_positive_int(group, "group", self.name) self.add_prim_attr('offset_a', 0) def infer_shape(self, x_shape, w_shape, b_shape=None): validator.check_equal_int(len(w_shape), 4, "weight rank", self.name) validator.check_equal_int(len(x_shape), 4, "x rank", self.name) validator.check("x_shape[1]", x_shape[1], "w_shape[1]", w_shape[1], Rel.EQ, self.name) validator.check('kernel_size', self.kernel_size, 'w_shape[2:4]', tuple(w_shape[2:4]), Rel.EQ, self.name) kernel_size_n, _, kernel_size_h, kernel_size_w = w_shape _, _, stride_h, stride_w = self.stride _, _, dilation_h, dilation_w = self.dilation if kernel_size_n != 1: raise ValueError(f"For '{self.name}', the batch of 'weight' should be 1, but got {kernel_size_n}") if self.pad_mode == "valid": h_out = math.ceil((x_shape[2] - dilation_h * (kernel_size_h - 1)) / stride_h) w_out = math.ceil((x_shape[3] - dilation_w * (kernel_size_w - 1)) / stride_w) pad_top, pad_bottom, pad_left, pad_right = 0, 0, 0, 0 elif self.pad_mode == "same": h_out = math.ceil(x_shape[2] / stride_h) w_out = math.ceil(x_shape[3] / stride_w) pad_needed_h = max(0, (h_out - 1) * stride_h + dilation_h * (kernel_size_h - 1) + 1 - x_shape[2]) pad_top = math.floor(pad_needed_h / 2) pad_bottom = pad_needed_h - pad_top pad_needed_w = max(0, (w_out - 1) * stride_w + dilation_w * (kernel_size_w - 1) + 1 - x_shape[3]) pad_left = math.floor(pad_needed_w / 2) pad_right = pad_needed_w - pad_left elif self.pad_mode == 'pad': pad_top, pad_bottom, pad_left, pad_right = self.padding h_out = 1 + (x_shape[2] + pad_top + pad_bottom - kernel_size_h - (kernel_size_h - 1) * (dilation_h - 1)) \ / stride_h w_out = 1 + (x_shape[3] + pad_left + pad_right - kernel_size_w - (kernel_size_w - 1) * (dilation_w - 1)) \ / stride_w h_out = math.floor(h_out) w_out = math.floor(w_out) self.pad_list = (pad_top, pad_bottom, pad_left, pad_right) self.add_prim_attr('pad_list', self.pad_list) out_channel = self.channel_multiplier * x_shape[1] out_shape = [x_shape[0], out_channel, h_out, w_out] return out_shape def infer_dtype(self, x_dtype, w_dtype, b_dtype=None): args = {'x': x_dtype, 'w': w_dtype} validator.check_tensors_dtypes_same_and_valid(args, mstype.number_type, self.name) if x_dtype.element_type() == mstype.int8: return mstype.tensor_type(mstype.int32) return x_dtype
class _Pool(PrimitiveWithInfer): r""" Performs max/avg pooling operation. Args: kernel_size (Union[int, tuple[int]]): The size of the kernel, that must be a tuple of two `int` for height and width. Default: 1. strides (Union[int, tuple[int]]): The stride of the window, that must be a tuple of two `int` for height and width. Default: 1. pad_mode (str): The optional value for pad mode, is "same" or "valid". Default: "valid". data_format (str): The optional value for data format, is 'NHWC' or 'NCHW'. Default: "NCHW". """ @prim_attr_register def __init__(self, kernel_size=1, strides=1, pad_mode="valid", data_format="NCHW"): """Initialize _Pool.""" self.init_prim_io_names(inputs=['x'], outputs=['output']) validator.check_value_type('kernel_size', kernel_size, [int, tuple], self.name) validator.check_value_type('strides', strides, [int, tuple], self.name) validator.check_value_type('pad_mode', pad_mode, [str], self.name) self.pad_mode = validator.check_string(pad_mode.upper(), ['VALID', 'SAME'], 'pad_mode', self.name) self.add_prim_attr("pad_mode", self.pad_mode) self.is_maxpoolwithargmax = (self.name == "MaxPoolWithArgmax") self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.name) if context.get_context("device_target") != "GPU" and self.format == "NHWC": raise ValueError(f"For '{self.name}', the 'NHWC' format is only supported in GPU target, " f"but got the 'data_format' is {self.format} and " f"the platform is {context.get_context('device_target')}.") if not self.is_maxpoolwithargmax: self.add_prim_attr('data_format', self.format) self.kernel_size = _check_positive_int_or_tuple( "kernel_size", kernel_size, self.name, allow_four=False, ret_four=True) if self.is_maxpoolwithargmax: self.kernel_size = (1, self.kernel_size[-2], self.kernel_size[-1], 1) self.add_prim_attr("kernel_size", self.kernel_size) self.strides = _check_positive_int_or_tuple("strides", strides, self.name, allow_four=False, ret_four=True) if self.is_maxpoolwithargmax: self.strides = (1, self.strides[-2], self.strides[-1], 1) self.add_prim_attr("strides", self.strides) def infer_shape(self, x_shape): x_shape_norm = x_shape if self.format == "NCHW" else [x_shape[0], x_shape[3], x_shape[1], x_shape[2]] validator.check_equal_int(len(x_shape_norm), 4, "x rank", self.name) batch, channel, input_h, input_w = x_shape_norm if self.is_maxpoolwithargmax: _, kernel_h, kernel_w, _ = self.kernel_size _, stride_h, stride_w, _ = self.strides else: _, _, kernel_h, kernel_w = self.kernel_size _, _, stride_h, stride_w = self.strides if self.pad_mode == "VALID": out_h = math.ceil((input_h - (kernel_h - 1)) / stride_h) out_w = math.ceil((input_w - (kernel_w - 1)) / stride_w) elif self.pad_mode == "SAME": out_h = math.ceil(input_h / stride_h) out_w = math.ceil(input_w / stride_w) out_shape = [batch, channel, out_h, out_w] if self.format == "NCHW" else [batch, out_h, out_w, channel] for shape_value in out_shape: if shape_value <= 0: raise ValueError(f"For '{self.name}', the each element of the output shape must be larger than 0, " f"but got output shape: {out_shape}. The input shape: {x_shape}, " f"kernel size: {self.kernel_size}, strides: {self.strides}." f"Please check the official api documents for " f"more information about the output.") return out_shape def infer_dtype(self, x_dtype): validator.check_subclass("input", x_dtype, mstype.tensor, self.name) return x_dtype
[docs]class MaxPool(_Pool): r""" Max pooling operation. Applies a 2D max pooling over an input Tensor which can be regarded as a composition of 2D planes. Typically the input is of shape :math:`(N_{in}, C_{in}, H_{in}, W_{in})`, MaxPool outputs regional maximum in the :math:`(H_{in}, W_{in})`-dimension. Given kernel size :math:`ks = (h_{ker}, w_{ker})` and stride :math:`s = (s_0, s_1)`, the operation is as follows. .. math:: \text{output}(N_i, C_j, h, w) = \max_{m=0, \ldots, h_{ker}-1} \max_{n=0, \ldots, w_{ker}-1} \text{input}(N_i, C_j, s_0 \times h + m, s_1 \times w + n) Args: kernel_size (Union[int, tuple[int]]): The size of kernel used to take the maximum value, is an int number that represents height and width of the kernel, or a tuple of two int numbers that represent height and width respectively. Default: 1. strides (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents not only the height of movement but also the width of movement, or a tuple of two int numbers that represent height and width of movement respectively. Default: 1. pad_mode (str): The optional value of pad mode is "same" or "valid". Default: "valid". - same: Adopts the way of completion. The height and width of the output will be the same as the input. The total number of padding will be calculated in horizontal and vertical directions and evenly distributed to top, bottom, left and right if possible. Otherwise, the last extra padding will be done from the bottom and the right side. - valid: Adopts the way of discarding. The possible largest height and width of output will be returned without padding. Extra pixels will be discarded. data_format (str) : The optional value for data format, is 'NHWC' or 'NCHW'. Default: 'NCHW'. Inputs: - **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`. Outputs: Tensor, with shape :math:`(N, C_{out}, H_{out}, W_{out})`. Raises: TypeError: If `kernel_size` or `strides` is neither int nor tuple. ValueError: If `pad_mode` is neither 'valid' nor 'same' with not case sensitive. ValueError: If `data_format` is neither 'NCHW' nor 'NHWC'. ValueError: If `kernel_size` or `strides` is less than 1. ValueError: If length of shape of `input` is not equal to 4. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> x = Tensor(np.arange(1 * 3 * 3 * 4).reshape((1, 3, 3, 4)), mindspore.float32) >>> maxpool_op = ops.MaxPool(pad_mode="VALID", kernel_size=2, strides=1) >>> output = maxpool_op(x) >>> print(output) [[[[ 5. 6. 7.] [ 9. 10. 11.]] [[17. 18. 19.] [21. 22. 23.]] [[29. 30. 31.] [33. 34. 35.]]]] """ @prim_attr_register def __init__(self, kernel_size=1, strides=1, pad_mode="valid", data_format="NCHW"): """Initialize MaxPool.""" super(MaxPool, self).__init__(kernel_size, strides, pad_mode, data_format)
[docs]class MaxPoolWithArgmax(_Pool): r""" Performs max pooling on the input Tensor and returns both max values and indices. Typically the input is of shape :math:`(N_{in}, C_{in}, H_{in}, W_{in})`, MaxPool outputs regional maximum in the :math:`(H_{in}, W_{in})`-dimension. Given kernel size :math:`ks = (h_{ker}, w_{ker})` and stride :math:`s = (s_0, s_1)`, the operation is as follows. .. math:: \text{output}(N_i, C_j, h, w) = \max_{m=0, \ldots, h_{ker}-1} \max_{n=0, \ldots, w_{ker}-1} \text{input}(N_i, C_j, s_0 \times h + m, s_1 \times w + n) Args: kernel_size (Union[int, tuple[int]]): The size of kernel used to take the maximum value and argmax value, is an int number that represents height and width of the kernel, or a tuple of two int numbers that represent height and width respectively. Default: 1. strides (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents not only the height of movement but also the width of movement, or a tuple of two int numbers that represent height and width of movement respectively. Default: 1. pad_mode (str): The optional value for pad mode, is "same" or "valid". Default: "valid". - same: Adopts the way of completion. The height and width of the output will be the same as the input. The total number of padding will be calculated in horizontal and vertical directions and evenly distributed to top, bottom, left and right if possible. Otherwise, the last extra padding will be done from the bottom and the right side. - valid: Adopts the way of discarding. The possible largest height and width of output will be returned without padding. Extra pixels will be discarded. data_format (str) : The optional value for data format, is 'NHWC' or 'NCHW'. Default: 'NCHW'. Inputs: - **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`. Data type must be float16 or float32. Outputs: Tuple of 2 Tensors, representing the maxpool result and where the max values are generated. - **output** (Tensor) - Maxpooling result, with shape :math:`(N, C_{out}, H_{out}, W_{out})`. It has the same data type as `x`. - **mask** (Tensor) - Max values' index represented by the mask. Data type is int32. Raises: TypeError: If the data type of `x` is neither float16 nor float32. TypeError: If `kernel_size` or `strides` is neither an int nor a tuple. TypeError: If `x` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> x = Tensor(np.arange(1 * 3 * 3 * 4).reshape((1, 3, 3, 4)), mindspore.float32) >>> maxpool_arg_op = ops.MaxPoolWithArgmax(pad_mode="VALID", kernel_size=2, strides=1) >>> output_tensor, argmax = maxpool_arg_op(x) >>> print(output_tensor) [[[[ 5. 6. 7.] [ 9. 10. 11.]] [[17. 18. 19.] [21. 22. 23.]] [[29. 30. 31.] [33. 34. 35.]]]] """ @prim_attr_register def __init__(self, kernel_size=1, strides=1, pad_mode="valid", data_format="NCHW"): """Initialize MaxPoolWithArgmax.""" super(MaxPoolWithArgmax, self).__init__(kernel_size, strides, pad_mode, data_format) def infer_shape(self, x_shape): out_shape = _Pool.infer_shape(self, x_shape) return out_shape, out_shape def infer_dtype(self, x_dtype): validator.check_tensor_dtype_valid("x", x_dtype, (mstype.float16, mstype.float32), self.name) argmax_dtype = mstype.int32 return x_dtype, argmax_dtype
[docs]class MaxPool3D(PrimitiveWithInfer): r""" 3D max pooling operation. Applies a 3D max pooling over an input Tensor which can be regarded as a composition of 3D planes. Typically the input is of shape :math:`(N_{in}, C_{in}, D_{in}, H_{in}, W_{in})`, MaxPool outputs regional maximum in the :math:`(D_{in}, H_{in}, W_{in})`-dimension. Given kernel size :math:`ks = (d_{ker}, h_{ker}, w_{ker})` and stride :math:`s = (s_0, s_1, s_2)`, the operation is as follows. .. math:: \text{output}(N_i, C_j, d, h, w) = \max_{l=0, \ldots, d_{ker}-1} \max_{m=0, \ldots, h_{ker}-1} \max_{n=0, \ldots, w_{ker}-1} \text{input}(N_i, C_j, s_0 \times d + l, s_1 \times h + m, s_2 \times w + n) Args: kernel_size (Union[int, tuple[int]]): The size of kernel used to take the maximum value, is an int number that represents depth, height and width of the kernel, or a tuple of three int numbers that represent depth, height and width respectively. Default: 1. strides (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents not only the depth, height of movement but also the width of movement,, or a tuple of three int numbers that represent depth, height and width of movement respectively. Default: 1. pad_mode (str): The optional value of pad mode is "same" or "valid". Default: "valid". - same: Adopts the way of completion. The height and width of the output will be the same as the input. The total number of padding will be calculated in horizontal and vertical directions and evenly distributed to top, bottom, left and right if possible. Otherwise, the last extra padding will be done from the bottom and the right side. - valid: Adopts the way of discarding. The possible largest height and width of output will be returned without padding. Extra pixels will be discarded. - pad: Implicit paddings on both sides of the input in depth, height and width. The number of "pad" will be padded to the input Tensor borders. "pad" must be greater than or equal to 0. pad_list (Union(int, tuple[int])): The pad value to be filled. Default: 0. If `pad` is an integer, the paddings of head, tail, top, bottom, left and right are the same, equal to pad. If `pad` is a tuple of six integers, the padding of head, tail, top, bottom, left and right equals to pad[0], pad[1], pad[2], pad[3], pad[4] and pad[5] correspondingly. ceil_mode (bool): Whether to use ceil instead of floor to calculate output shape. Only effective in "pad" mode. When "pad_mode" is "pad" and "ceil_mode" is "None", "ceil_mode" will be set as "False". Default: None. data_format (str) : The optional value for data format. Currently only support 'NCDHW'. Default: 'NCDHW'. Inputs: - **x** (Tensor) - Tensor of shape :math:`(N, C, D_{in}, H_{in}, W_{in})`. Data type must be float16 or float32. Outputs: Tensor, with shape :math:`(N, C, D_{out}, H_{out}, W_{out})`. Has the data type of `x`. Raises: TypeError: If `kernel_size` or `strides` is neither an int nor a tuple. TypeError: If `pad_mode` or `data_format` is not a string. ValueError: If numbers in `kernel_size` or `strides` are not positive. ValueError: If `pad_mode` is not one of 'same', 'valid' or 'pad'. ValueError: If `pad_mode` is 'same' or 'valid', 'ceil_mode' is not None. ValueError: If `kernel_size` or `strides` is a tuple whose length is not equal to 3. ValueError: If `data_format` is not 'NCDHW'. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> x = Tensor(np.arange(1 * 2 * 2 * 2 * 3).reshape((1, 2, 2, 2, 3)), mindspore.float32) >>> max_pool3d = ops.MaxPool3D(kernel_size=2, strides=1, pad_mode="valid") >>> output = max_pool3d(x) >>> print(output) [[[[[10. 11.]]] [[[22. 23.]]]]] """ @prim_attr_register def __init__(self, kernel_size=1, strides=1, pad_mode="VALID", pad_list=0, ceil_mode=None, data_format="NCDHW"): """Initialize MaxPool3D.""" self.init_prim_io_names(inputs=['x'], outputs=['output']) validator.check_value_type('kernel_size', kernel_size, [int, tuple], self.name) validator.check_value_type('strides', strides, [int, tuple], self.name) validator.check_value_type('pad_mode', pad_mode, [str], self.name) self.pad_mode = validator.check_string(pad_mode.upper(), ['VALID', 'SAME', 'PAD'], 'pad_mode', self.name) if pad_mode.upper() == "PAD": self.pad_mode = "CALCULATED" self.add_prim_attr("pad_mode", self.pad_mode) self.data_format = validator.check_string(data_format, ['NCDHW'], 'data_format', self.name) self.kernel_size = _check_3d_int_or_tuple("kernel_size", kernel_size, self.name, allow_five=False, ret_five=True) self.add_prim_attr("kernel_size", self.kernel_size) self.strides = _check_3d_int_or_tuple("strides", strides, self.name, allow_five=False, ret_five=True) self.add_prim_attr("strides", self.strides) if ceil_mode is None: self.ceil_mode = not self.pad_mode == "CALCULATED" else: self.ceil_mode = validator.check_value_type('ceil_mode', ceil_mode, [bool], self.name) if self.pad_mode != "CALCULATED": raise ValueError("When the 'pad_mode' is 'same' or 'valid', the 'ceil_mode' only supports 'None'.") self.add_prim_attr("ceil_mode", int(self.ceil_mode)) validator.check_value_type('pad_list', pad_list, (int, tuple), self.name) self.pad_list = pad_list if isinstance(self.pad_list, int): self.pad_list = (self.pad_list,) * 6 if len(self.pad_list) == 3: self.pad_list = (pad_list[0], pad_list[0], pad_list[1], pad_list[1], pad_list[2], pad_list[2]) if len(self.pad_list) != 3 and len(self.pad_list) != 6: raise ValueError(f"For '{self.name}', attr 'pad_list' should be an positive int number or a tuple of " f"three or six positive int numbers, but got {len(self.pad_list)} numbers.") if self.pad_mode != 'CALCULATED' and self.pad_list != (0, 0, 0, 0, 0, 0): raise ValueError(f"For '{self.name}', the 'pad_list' must be zero or (0, 0, 0, 0, 0, 0) when 'pad_mode' " f"is not \"pad\", but got 'pad_list' is {pad_list} and 'pad_mode' is {pad_mode}.") if self.pad_mode == 'CALCULATED': for item in self.pad_list: validator.check_non_negative_int(item, 'pad_list item', self.name) self.add_prim_attr("pad_list", self.pad_list) def infer_shape(self, x_shape): validator.check_equal_int(len(x_shape), 5, "x rank", self.name) batch, channel, input_d, input_h, input_w = x_shape self.add_prim_attr("x_shape", x_shape) _, _, kernel_d, kernel_h, kernel_w = self.kernel_size _, _, stride_d, stride_h, stride_w = self.strides if self.pad_mode == "VALID": out_d = math.ceil((input_d - (kernel_d - 1)) / stride_d) out_h = math.ceil((input_h - (kernel_h - 1)) / stride_h) out_w = math.ceil((input_w - (kernel_w - 1)) / stride_w) elif self.pad_mode == "SAME": out_d = math.ceil(input_d / stride_d) out_h = math.ceil(input_h / stride_h) out_w = math.ceil(input_w / stride_w) else: out_d = ((input_d + self.pad_list[0] + self.pad_list[1] - (kernel_d - 1) - 1) / stride_d) + 1 out_h = ((input_h + self.pad_list[2] + self.pad_list[3] - (kernel_h - 1) - 1) / stride_h) + 1 out_w = ((input_w + self.pad_list[4] + self.pad_list[5] - (kernel_w - 1) - 1) / stride_w) + 1 if self.ceil_mode: out_d = math.ceil(out_d) out_h = math.ceil(out_h) out_w = math.ceil(out_w) else: out_d = math.floor(out_d) out_h = math.floor(out_h) out_w = math.floor(out_w) out_shape = [batch, channel, out_d, out_h, out_w] _check_shape('output', out_shape, self.name) return out_shape def infer_dtype(self, x_dtype): validator.check_tensor_dtype_valid("x", x_dtype, [mstype.float16, mstype.float32], self.name) return x_dtype
[docs]class AvgPool(_Pool): r""" Average pooling operation. Applies a 2D average pooling over an input Tensor which can be regarded as a composition of 2D input planes. Typically the input is of shape :math:`(N_{in}, C_{in}, H_{in}, W_{in})`, AvgPool outputs regional average in the :math:`(H_{in}, W_{in})`-dimension. Given kernel size :math:`ks = (h_{ker}, w_{ker})` and stride :math:`s = (s_0, s_1)`, the operation is as follows. .. math:: \text{output}(N_i, C_j, h, w) = \frac{1}{h_{ker} * w_{ker}} \sum_{m=0}^{h_{ker}-1} \sum_{n=0}^{w_{ker}-1} \text{input}(N_i, C_j, s_0 \times h + m, s_1 \times w + n) .. warning:: - Global pooling is supported. - For Ascend, the height of "kernel_size" and the weight of "kernel_size" are positive integers within the range [1, 255]. ksize_h * ksize_w < 256. - For Ascend, due to instruction restrictions, the values of "strides_h" and "strides_w" are positive integers within the range [1, 63]. Args: kernel_size (Union[int, tuple[int]]): The size of kernel used to take the average value, is an int number that represents height and width of the kernel, or a tuple of two int numbers that represent height and width respectively. Default: 1. strides (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents the height and width of movement are both strides, or a tuple of two int numbers that represent height and width of movement respectively. Default: 1. pad_mode (str): The optional value for pad mode, is "same" or "valid". Default: "valid". - same: Adopts the way of completion. The height and width of the output will be the same as the input. The total number of padding will be calculated in horizontal and vertical directions and evenly distributed to top and bottom, left and right if possible. Otherwise, the last extra padding will be done from the bottom and the right side. - valid: Adopts the way of discarding. The possible largest height and width of output will be returned without padding. Extra pixels will be discarded. data_format (str): The format of input and output data. It should be 'NHWC' or 'NCHW'. Default: 'NCHW'. Inputs: - **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`. Outputs: Tensor, with shape :math:`(N, C_{out}, H_{out}, W_{out})`. Raises: TypeError: If `kernel_size` or `strides` is neither int nor tuple. ValueError: If `pad_mode` is neither 'valid' nor 'same' with not case sensitive. ValueError: If `data_format` is neither 'NCHW' nor 'NHWC'. ValueError: If `kernel_size` or `strides` is less than 1. ValueError: If length of shape of `x` is not equal to 4. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.avgpool_op = ops.AvgPool(pad_mode="VALID", kernel_size=2, strides=1) ... ... def construct(self, x): ... result = self.avgpool_op(x) ... return result ... >>> x = Tensor(np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4), mindspore.float32) >>> net = Net() >>> output = net(x) >>> print(output) [[[[ 2.5 3.5 4.5] [ 6.5 7.5 8.5]] [[14.5 15.5 16.5] [18.5 19.5 20.5]] [[26.5 27.5 28.5] [30.5 31.5 32.5]]]] """ @prim_attr_register def __init__(self, kernel_size=1, strides=1, pad_mode="valid", data_format="NCHW"): """Initialize AvgPool.""" super(AvgPool, self).__init__(kernel_size, strides, pad_mode, data_format)
[docs]class Conv2DBackpropInput(Primitive): r""" The Conv2DBackpropInput interface is deprecated, please refer to :class:`mindspore.ops.Conv2dTranspose` if you want to do unsampling. Supported Platforms: Deprecated """ __mindspore_signature__ = ( sig.make_sig('out_backprop', dtype=sig.sig_dtype.T), sig.make_sig('filter', dtype=sig.sig_dtype.T1), sig.make_sig('input_sizes', dtype=sig.sig_dtype.T2) ) @prim_attr_register def __init__(self, out_channel, kernel_size, pad_mode="valid", pad=0, pad_list=None, mode=1, stride=1, dilation=1, group=1, data_format="NCHW"): """Initialize Conv2DBackpropInput""" self.init_prim_io_names(inputs=['out_backprop', 'filter', 'input_sizes'], outputs=['output']) self.out_channel = validator.check_positive_int(out_channel, 'out_channel', self.name) self.kernel_size = _check_positive_int_or_tuple('kernel_size', kernel_size, self.name) self.add_prim_attr('kernel_size', self.kernel_size) self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.name) if context.get_context("device_target") != "GPU" and self.format == "NHWC": raise ValueError(f"For '{self.name}', the 'NHWC' format is only supported in GPU target, " f"but got the 'data_format' is {self.format} and " f"the platform is {context.get_context('device_target')}.") self.add_prim_attr('data_format', self.format) self.stride = _check_positive_int_or_tuple('stride', stride, self.name, allow_four=True, ret_four=True) self.stride = _update_attr_by_format(self.stride, self.format) self.add_prim_attr('stride', self.stride) self.dilation = _check_positive_int_or_tuple('dilation', dilation, self.name, allow_four=True, ret_four=True) self.dilation = _update_attr_by_format(self.dilation, self.format) self.add_prim_attr('dilation', self.dilation) validator.check_value_type('pad', pad, (int, tuple), self.name) validator.check_value_type('pad_mode', pad_mode, [str], self.name) if isinstance(pad, int): pad = (pad,) * 4 else: validator.check_equal_int(len(pad), 4, 'pad size', self.name) self.pad_mode = validator.check_string(pad_mode.lower(), ['valid', 'same', 'pad'], 'pad_mode', self.name) if pad_mode != 'pad' and pad != (0, 0, 0, 0): raise ValueError(f"For '{self.name}', the 'pad' must be zero or (0, 0, 0, 0) when 'pad_mode' " f"is not \"pad\", but got 'pad' is {self.pad} and 'pad_mode' is {pad_mode}.") self.add_prim_attr("pad", pad) self.padding = pad if self.pad_mode == 'pad': for item in pad: validator.check_non_negative_int(item, 'pad item', self.name) pad_mode = pad_mode.upper() self.add_prim_attr('pad_mode', pad_mode) self.mode = validator.check_equal_int(mode, 1, 'mode', self.name) self.group = validator.check_positive_int(group, 'group', self.name) self.add_prim_attr('groups', self.group) if pad_list: for x in pad_list: validator.check_non_negative_int(x, 'element of pad_list', self.name) self.pad_list = pad_list
[docs]class Conv2DTranspose(Conv2DBackpropInput): """ Compute a 2D transposed convolution, which is also known as a deconvolution (although it is not an actual deconvolution). Args: out_channel (int): The dimensionality of the output space. kernel_size (Union[int, tuple[int]]): The size of the convolution window. pad_mode (str): Modes to fill padding. It could be "valid", "same", or "pad". Default: "valid". pad (Union[int, tuple[int]]): The pad value to be filled. Default: 0. If `pad` is an integer, the paddings of top, bottom, left and right are the same, equal to pad. If `pad` is a tuple of four integers, the padding of top, bottom, left and right equal to pad[0], pad[1], pad[2], and pad[3] correspondingly. pad_list (Union[str, None]): The pad list like (top, bottom, left, right). Default: None. mode (int): Modes for different convolutions. 0 Math convolution, 1 cross-correlation convolution , 2 deconvolution, 3 depthwise convolution. Default: 1. stride (Union[int. tuple[int]]): The stride to be applied to the convolution filter. Default: 1. dilation (Union[int. tuple[int]]): Specifies the dilation rate to be used for the dilated convolution. Default: 1. group (int): Splits input into groups. Default: 1. data_format (str): The format of input and output data. It should be 'NHWC' or 'NCHW',\ default is 'NCHW'. Inputs: - **dout** (Tensor) - the gradients with respect to the output of the convolution. The shape conforms to the default data_format :math:`(N, C_{out}, H_{out}, W_{out})`. - **weight** (Tensor) - Set size of kernel is :math:`(K_1, K_2)`, then the shape is :math:`(C_{out}, C_{in}, K_1, K_2)`. - **input_size** (Tensor) - A tuple describes the shape of the input which conforms to the format :math:`(N, C_{in}, H_{in}, W_{in})`. Outputs: Tensor, the gradients with respect to the input of convolution. It has the same shape as the input. Raises: TypeError: If `kernel_size`, `stride`, `pad` or `dilation` is neither an int nor a tuple. TypeError: If `out_channel` or `group` is not an int. ValueError: If `kernel_size`, `stride` or `dilation` is less than 1. ValueError: If `pad_mode` is not one of 'same', 'valid' or 'pad'. ValueError: If `padding` is a tuple whose length is not equal to 4. ValueError: If `pad_mode` it not equal to 'pad' and `pad` is not equal to (0, 0, 0, 0). ValueError: If `data_format` is neither 'NCHW' nor 'NHWC'. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> dout = Tensor(np.ones([10, 32, 30, 30]), mindspore.float32) >>> weight = Tensor(np.ones([32, 32, 3, 3]), mindspore.float32) >>> x = Tensor(np.ones([10, 32, 32, 32])) >>> conv2d_transpose_input = ops.Conv2DTranspose(out_channel=32, kernel_size=3) >>> output = conv2d_transpose_input(dout, weight, ops.shape(x)) >>> print(output.shape) (10, 32, 32, 32) """ @prim_attr_register def __init__(self, out_channel, kernel_size, pad_mode="valid", pad=0, pad_list=None, mode=1, stride=1, dilation=1, group=1, data_format="NCHW"): """Initialize Conv2DTranspose.""" super(Conv2DTranspose, self).__init__(out_channel, kernel_size, pad_mode, pad, pad_list, mode, stride, dilation, group, data_format)
[docs]class BiasAdd(Primitive): r""" Returns sum of input and bias tensor. Adds the 1-D bias tensor to the input tensor, and broadcasts the shape on all axis except for the channel axis. Args: data_format (str): The format of input and output data. It should be 'NHWC', 'NCHW' or 'NCDHW'. Default is 'NCHW'. Inputs: - **input_x** (Tensor) - The input tensor. The shape can be 2-5 dimensions. The data type should be float16 or float32. - **bias** (Tensor) - The bias tensor, with shape :math:`(C)`. The shape of `bias` must be the same as `input_x`'s channel dimension. The data type should be float16 or float32. Outputs: Tensor, with the same shape and data type as `input_x`. Raises: TypeError: If `data_format` is not a str. TypeError: If `input_x` or `bias` is not a Tensor. TypeError: If dtype of `input_x` or `bias` is neither float16 nor float32. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Tensor(np.arange(6).reshape((2, 3)), mindspore.float32) >>> bias = Tensor(np.random.random(3).reshape((3,)), mindspore.float32) >>> bias_add = ops.BiasAdd() >>> output = bias_add(input_x, bias) >>> print(output.shape) (2, 3) """ @prim_attr_register def __init__(self, data_format="NCHW"): """Initialize BiasAdd.""" self.init_prim_io_names(inputs=['x', 'b'], outputs=['output']) self.format = validator.check_string(data_format, ['NCHW', 'NHWC', 'NCDHW'], 'format', self.name) if context.get_context("device_target") != "GPU" and self.format == "NHWC": raise ValueError(f"For '{self.name}', the 'NHWC' format is only supported in GPU target, " f"but got the 'data_format' is {self.format} and " f"the platform is {context.get_context('device_target')}.") self.add_prim_attr('data_format', self.format)
[docs]class TopK(PrimitiveWithInfer): """ Finds values and indices of the `k` largest entries along the last dimension. .. warning:: - If sorted is set to 'False', it will use the aicpu operator, the performance may be reduced. If the `input_x` is a one-dimensional Tensor, finds the `k` largest entries in the Tensor, and outputs its value and index as a Tensor. Therefore, values[`k`] is the `k` largest item in `input_x`, and its index is indices [`k`]. For a multi-dimensional matrix, calculates the first `k` entries in each row (corresponding vector along the last dimension), therefore: .. math:: values.shape = indices.shape = input.shape[:-1] + [k]. If the two compared elements are the same, the one with the smaller index value is returned first. Args: sorted (bool): If true, the obtained elements will be sorted by the values in descending order. Default: True. Inputs: - **input_x** (Tensor) - Input to be computed, data type must be float16, float32 or int32. - **k** (int) - The number of top elements to be computed along the last dimension, constant input is needed. Outputs: Tuple of 2 tensors, the values and the indices. - **values** (Tensor) - The `k` largest elements in each slice of the last dimension. - **indices** (Tensor) - The indices of values within the last dimension of input. Raises: TypeError: If `sorted` is not a bool. TypeError: If `input_x` is not a Tensor. TypeError: If `k` is not an int. TypeError: If dtype of `input_x` is not one of the following: float16, float32 or int32. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> topk = ops.TopK(sorted=True) >>> input_x = Tensor([1, 2, 3, 4, 5], mindspore.float16) >>> k = 3 >>> values, indices = topk(input_x, k) >>> print((values, indices)) (Tensor(shape=[3], dtype=Float16, value= [ 5.0000e+00, 4.0000e+00, 3.0000e+00]), Tensor(shape=[3], dtype=Int32, value= [4, 3, 2])) """ @prim_attr_register def __init__(self, sorted=True): """Initialize TopK.""" self.sorted = validator.check_value_type("sorted", sorted, [bool], self.name) self.add_prim_attr("sorted", self.sorted) self.init_prim_io_names(inputs=['input', 'k'], outputs=['values', 'indices']) def __infer__(self, input_x, k): x_dtype = input_x['dtype'] valid_dtypes = (mstype.int32, mstype.float16, mstype.float32) validator.check_tensor_dtype_valid('x', x_dtype, valid_dtypes, self.name) k_v = k['value'] validator.check_value_type('k', k_v, (int,), self.name) x_shape = list(input_x['shape']) ndim = len(x_shape) - 1 x_shape[ndim] = k_v return {'shape': (x_shape, x_shape), 'dtype': (x_dtype, mstype.int32), 'value': None}
[docs]class NLLLoss(PrimitiveWithInfer): r""" Gets the negative log likelihood loss between logits and labels. The nll loss with reduction=none can be described as: .. math:: \ell(x, t)=L=\left\{l_{1}, \ldots, l_{N}\right\}^{\top}, \quad l_{n}=-w_{t_{n}} x_{n, t_{n}}, \quad w_{c}=\text { weight }[c] \cdot 1 where :math:`x` is the logits, :math:`t` is the labels, :math:`w` is the weight, N is the batch size, :math:`c` belonging to [0, C-1] is class index, where :math:`C` is the number of classes. If reduction is not 'none' (default 'mean'), then .. math:: \ell(x, t)=\left\{\begin{array}{ll} \sum_{n=1}^{N} \frac{1}{\sum_{n=1}^{N} w_{t n}} l_{n}, & \text { if reduction }=\text { 'mean'; } \\ \sum_{n=1}^{N} l_{n}, & \text { if reduction }=\text { 'sum' } \end{array}\right. Args: reduction (str): Apply specific reduction method to the output: 'none', 'mean', or 'sum'. Default: 'mean'. Inputs: - **logits** (Tensor) - Input logits, with shape :math:`(N, C)`. Data type only supports float32 or float16. - **labels** (Tensor) - Ground truth labels, with shape :math:`(N,)`. Data type only supports int32. - **weight** (Tensor) - The rescaling weight to each class, with shape :math:`(C,)` and data type only supports float32 or float16. Outputs: Tuple of 2 tensors composed with `loss` and `total_weight`. - **loss** (Tensor) - When `reduction` is 'none' and `logits` is a 2D tensor, the `loss` shape is :math:`(N,)`. Otherwise, the `loss` is a scalar. The data type is the same with `input's`. - **total_weight** (Tensor) - The `total_weight` is a scalar. The data type is the same with `weight's`. Raises: TypeError: If dtype of `logits` or `weight` is neither float16 nor float32, `labels` is not int32. ValueError: If `logits` is not a one or two dimension tensor, `labels` and `weight` are not one dimension tensors. When `logits` is a two dimension tensor, the first dimension of `logits` is not equal to `labels`, and second dimension of `logits` is not equal to `weight`. When `logits` is a one dimension tensor, the dimensions of `logits`, `labels` and `weight` should be equal to each other. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> logits = Tensor(np.array([[0.5488135, 0.71518934], ... [0.60276335, 0.5448832], ... [0.4236548, 0.6458941]]).astype(np.float32)) >>> labels = Tensor(np.array([0, 0, 0]).astype(np.int32)) >>> weight = Tensor(np.array([0.3834415, 0.79172504]).astype(np.float32)) >>> nll_loss = ops.NLLLoss(reduction="mean") >>> loss, weight = nll_loss(logits, labels, weight) >>> print(loss) -0.52507716 >>> print(weight) 1.1503246 """ @prim_attr_register def __init__(self, reduction="mean"): """Initialize NLLLoss""" self.init_prim_io_names(inputs=['x', 'target', "weight"], outputs=['loss']) self.reduction = validator.check_string(reduction, ['none', 'sum', 'mean'], 'reduction', self.name) self.add_prim_attr('reduction', self.reduction) def infer_shape(self, x_shape, t_shape, w_shape): validator.check_int(len(x_shape), [1, 2], Rel.IN, "x rank", self.name) validator.check_int(len(t_shape), 1, Rel.EQ, "target rank", self.name) validator.check_int(len(w_shape), 1, Rel.EQ, "weight rank", self.name) validator.check(f"input_shape[0]", x_shape[0], "target_shape", t_shape[0], Rel.EQ, self.name) if len(x_shape) == 1: validator.check(f"input_shape[0]", x_shape[0], "weight_shape", w_shape[0], Rel.EQ, self.name) else: validator.check(f"input_shape[1]", x_shape[1], "weight_shape", w_shape[0], Rel.EQ, self.name) if self.reduction == "none": return t_shape, () return (), () def infer_dtype(self, x_dtype, t_dtype, w_dtype): valid_dtypes = (mstype.float16, mstype.float32) validator.check_tensor_dtype_valid("x_dtype", x_dtype, valid_dtypes, self.name) validator.check_tensor_dtype_valid("t_dtype", t_dtype, mstype.int32, self.name) validator.check_tensor_dtype_valid("w_dtype", w_dtype, valid_dtypes, self.name) return x_dtype, w_dtype
[docs]class SoftmaxCrossEntropyWithLogits(Primitive): r""" Gets the softmax cross-entropy value between logits and labels with one-hot encoding. The updating formulas of SoftmaxCrossEntropyWithLogits algorithm are as follows, .. math:: \begin{array}{ll} \\ p_{ij} = softmax(X_{ij}) = \frac{\exp(x_i)}{\sum_{j = 0}^{N-1}\exp(x_j)} \\ loss_{ij} = -\sum_j{Y_{ij} * ln(p_{ij})} \end{array} where :math:`X` represents `logits`. :math:`Y` represents `label`. :math:`loss` represents `output`. Inputs: - **logits** (Tensor) - Input logits, with shape :math:`(N, C)`. Data type must be float16 or float32. - **labels** (Tensor) - Ground truth labels, with shape :math:`(N, C)`, has the same data type with `logits`. Outputs: Tuple of 2 tensors(loss, dlogits), the `loss` shape is :math:`(N,)`, and the `dlogits` with the same shape as `logits`. Raises: TypeError: If dtype of `logits` or `labels` is neither float16 nor float32. TypeError: If `logits` or `labels` is not a Tensor. ValueError: If shape of `logits` is not the same as `labels`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> logits = Tensor([[2, 4, 1, 4, 5], [2, 1, 2, 4, 3]], mindspore.float32) >>> labels = Tensor([[0, 0, 0, 0, 1], [0, 0, 0, 1, 0]], mindspore.float32) >>> softmax_cross = ops.SoftmaxCrossEntropyWithLogits() >>> loss, dlogits = softmax_cross(logits, labels) >>> print(loss) [0.5899297 0.52374405] >>> print(dlogits) [[ 0.02760027 0.20393994 0.01015357 0.20393994 -0.44563377] [ 0.08015892 0.02948882 0.08015892 -0.4077012 0.21789455]] """ @prim_attr_register def __init__(self): pass
[docs]class SparseSoftmaxCrossEntropyWithLogits(PrimitiveWithInfer): r""" Computes the softmax cross-entropy value between logits and sparse encoding labels. Sets input logits as `X`, input label as `Y`, output as `loss`. Then, .. math:: \begin{array}{ll} \\ p_{ij} = softmax(X_{ij}) = \frac{\exp(x_i)}{\sum_{j = 0}^{N-1}\exp(x_j)} \\ loss_{ij} = \begin{cases} -ln(p_{ij}), &j = y_i \cr -ln(1 - p_{ij}), & j \neq y_i \end{cases} \\ loss = \sum_{ij} loss_{ij} \end{array} Args: is_grad (bool): If true, this operation returns the computed gradient. Default: False. Inputs: - **logits** (Tensor) - Input logits, with shape :math:`(N, C)`. Data type must be float16 or float32. - **labels** (Tensor) - Ground truth labels, with shape :math:`(N)`. Data type must be int32 or int64. Outputs: Tensor, if `is_grad` is False, the output tensor is the value of loss which is a scalar tensor; if `is_grad` is True, the output tensor is the gradient of input with the same shape as `logits`. Raises: TypeError: If `is_grad` is not a bool. TypeError: If dtype of `logits` is neither float16 nor float32. TypeError: If dtype of `labels` is neither int32 nor int64. ValueError: If logits.shape[0] != labels.shape[0]. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> logits = Tensor([[2, 3, 1, 4, 5], [2, 1, 2, 4, 3]], mindspore.float32) >>> labels = Tensor([0, 1], mindspore.int32) >>> sparse_softmax_cross = ops.SparseSoftmaxCrossEntropyWithLogits() >>> loss = sparse_softmax_cross(logits, labels) >>> print(loss) 3.4878292 >>> sparse_softmax_cross_grad = ops.SparseSoftmaxCrossEntropyWithLogits(is_grad=True) >>> loss_grad = sparse_softmax_cross_grad(logits, labels) >>> print(loss_grad) [[-0.48415753 0.04306427 0.00582811 0.11706084 0.3182043 ] [ 0.04007946 -0.4852556 0.04007946 0.2961494 0.10894729]] """ @prim_attr_register def __init__(self, is_grad=False): """Initialize SparseSoftmaxCrossEntropyWithLogits.""" validator.check_value_type('is_grad', is_grad, [bool], self.name) self.init_prim_io_names(inputs=['features', 'labels'], outputs=['output']) self.is_grad = is_grad self.add_prim_attr('sens', 1.0) def infer_shape(self, logits_shape, labels_shape): validator.check("logits_shape[0]", logits_shape[0], "labels_shape[0]", labels_shape[0], Rel.EQ, self.name) loss_shape = [] if self.is_grad: return logits_shape return loss_shape def infer_dtype(self, logits_type, labels_type): validator.check_tensor_dtype_valid("logits", logits_type, (mstype.float16, mstype.float32), self.name) validator.check_tensor_dtype_valid("labels", labels_type, (mstype.int32, mstype.int64), self.name) return logits_type
[docs]class ApplyMomentum(Primitive): r""" Optimizer that implements the Momentum algorithm. Refer to the paper `On the importance of initialization and momentum in deep learning <https://dl.acm.org/doi/10.5555/3042817.3043064>`_ for more details. .. math:: v_{t+1} = v_{t} \times u + gradients If use_nesterov is True: .. math:: p_{t+1} = p_{t} - (grad \times lr + v_{t+1} \times u \times lr) If use_nesterov is False: .. math:: p_{t+1} = p_{t} - lr \times v_{t+1} Here: where grad, lr, p, v and u denote the gradients, learning_rate, params, moments, and momentum respectively. Inputs of `variable`, `accumulation` and `gradient` comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type. Refer to :class:`mindspore.nn.Momentum` for more details about the formula and usage. Note: When separating parameter groups, the weight decay in each group will be applied on the parameters if the weight decay is positive. When not separating parameter groups, the `weight_decay` in the API will be applied on the parameters without 'beta' or 'gamma' in their names if `weight_decay` is positive. When separating parameter groups, if you want to centralize the gradient, set grad_centralization to True, but the gradient centralization can only be applied to the parameters of the convolution layer. If the parameters of the non-convolution layer are set to True, an error will be reported. To improve parameter groups performance, the customized order of parameters can be supported. Args: use_locking (bool): Whether to enable a lock to protect the variable and accumulation tensors from being updated. Default: False. use_nesterov (bool): Enable Nesterov momentum. Default: False. gradient_scale (float): The scale of the gradient. Default: 1.0. Inputs: - **variable** (Parameter) - Weights to be updated. Data type must be float. - **accumulation** (Parameter) - Accumulated gradient value by moment weight, has the same data type with `variable`. - **learning_rate** (Union[Number, Tensor]) - The learning rate value, must be a float number or a scalar tensor with float data type. - **gradient** (Tensor) - Gradient, has the same data type as `variable`. - **momentum** (Union[Number, Tensor]) - Momentum, must be a float number or a scalar tensor with float data type. Outputs: Tensor, parameters to be updated. Raises: TypeError: If the `use_locking` or `use_nesterov` is not a bool or `gradient_scale` is not a float. RuntimeError: If the data type of `var`, `accum` and `grad` conversion of Parameter is not supported. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: Please refer to the usage in :class:`mindspore.nn.Momentum`. """ __mindspore_signature__ = ( sig.make_sig('variable', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('accumulation', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('learning_rate', dtype=sig.sig_dtype.T1), sig.make_sig('gradient', dtype=sig.sig_dtype.T), sig.make_sig('momentum', dtype=sig.sig_dtype.T2) ) @prim_attr_register def __init__(self, use_nesterov=False, use_locking=False, gradient_scale=1.0): """Initialize ApplyMomentum.""" self.use_nesterov = validator.check_bool(use_nesterov, "use_nesterov", self.name) self.use_locking = validator.check_bool(use_locking, "use_locking", self.name) validator.check_value_type('gradient_scale', gradient_scale, [float], self.name) self.init_prim_io_names(inputs=['variable', 'accumulation', 'learning_rate', 'gradient', 'momentum'], outputs=['output']) self.add_prim_attr('side_effect_mem', True)
[docs]class SmoothL1Loss(Primitive): r""" Computes smooth L1 loss, a robust L1 loss. SmoothL1Loss is a Loss similar to MSELoss but less sensitive to outliers as described in the `Fast R-CNN <https://arxiv.org/abs/1504.08083>`_ by Ross Girshick. Given two input :math:`x,\ y` of length :math:`N`, the unreduced SmoothL1Loss can be described as follows: .. math:: L_{i} = \begin{cases} \frac{0.5 (x_i - y_i)^{2}}{\text{beta}}, & \text{if } |x_i - y_i| < \text{beta} \\ |x_i - y_i| - 0.5 \text{beta}, & \text{otherwise. } \end{cases} Here :math:`\text{beta}` controls the point where the loss function changes from quadratic to linear. Its default value is 1.0. :math:`N` is the batch size. This function returns an unreduced loss Tensor. .. warning:: This operator does not perform the "reduce" operation on the loss value. Call other reduce operators to perform "reduce" operation on the loss if required. Args: beta (float): A parameter used to control the point where the function will change from quadratic to linear. Default: 1.0. Inputs: - **logits** (Tensor) - Tensor of shape :math:`(N, *)` where :math:`*` means, any number of additional dimensions. Data type must be float16 or float32. - **labels** (Tensor) - Ground truth data, tensor of shape :math:`(N, *)`, same shape and dtype as the `logits`. Outputs: Tensor, loss float tensor, same shape and dtype as the `logits`. Raises: TypeError: If `beta` is not a float. TypeError: If dtype of `logits` or `labels` is neither float16 nor float32. ValueError: If `beta` is less than or equal to 0. ValueError: If shape of `logits` is not the same as `labels`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> loss = ops.SmoothL1Loss() >>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32) >>> labels = Tensor(np.array([1, 2, 2]), mindspore.float32) >>> output = loss(logits, labels) >>> print(output) [0. 0. 0.5] """ @prim_attr_register def __init__(self, beta=1.0): """Initialize SmoothL1Loss.""" validator.check_value_type('beta', beta, [float], self.name) validator.check('beta', beta, '', 0, Rel.GT, self.name) self.init_prim_io_names(inputs=['prediction', 'target'], outputs=['output'])
[docs]class SoftMarginLoss(Primitive): r""" SoftMarginLoss operation. Creates a criterion that optimizes a two-class classification logistic loss between input tensor :math:`x` and target tensor :math:`y` (containing 1 or -1). .. math:: \text{loss}(x, y) = \sum_i \frac{\log(1 + \exp(-y[i]*x[i]))}{\text{x.nelement}()} where :math:`x.nelement()` is the number of elements of x. Args: reduction (str): Apply specific reduction method to the output: 'none', 'mean' or 'sum'. Default: "mean". Inputs: - **logits** (Tensor) - Predict data. Data type must be float16 or float32. - **labels** (Tensor) - Ground truth data, with the same type and shape as `logits`. Outputs: Tensor or Scalar, if `reduction` is "none", its shape is the same as `logits`. Otherwise, a scalar value will be returned. Raises: TypeError: If `logits` or `labels` is not a Tensor. TypeError: If dtype of `logits` or `labels` is neither float16 nor float32. ValueError: If shape of `logits` is not the same as `labels`. ValueError: If `reduction` is not one of 'none', 'mean' or 'sum'. Supported Platforms: ``Ascend`` Examples: >>> loss = ops.SoftMarginLoss() >>> logits = Tensor(np.array([[0.3, 0.7], [0.5, 0.5]]), mindspore.float32) >>> labels = Tensor(np.array([[-1, 1], [1, -1]]), mindspore.float32) >>> output = loss(logits, labels) >>> print(output) 0.6764238 """ @prim_attr_register def __init__(self, reduction="mean"): """Initialize SoftMarginLoss""" self.init_prim_io_names(inputs=['predict', 'label'], outputs=['loss']) self.reduction = validator.check_string(reduction, ['none', 'sum', 'mean'], 'reduction', self.name)
[docs]class L2Loss(Primitive): r""" Calculates half of the L2 norm of a tensor without sqrt. Set `input_x` as x and output as loss. .. math:: loss = \frac{\sum x ^ 2}{2} Inputs: - **input_x** (Tensor) - A input Tensor. Data type must be float16 or float32. Outputs: Tensor, has the same dtype as `input_x`. The output tensor is the value of loss which is a scalar tensor. Raises: TypeError: If `input_x` is not a Tensor. TypeError: If dtype of `input_x` is neither float16 nor float32. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float16) >>> l2_loss = ops.L2Loss() >>> output = l2_loss(input_x) >>> print(output) 7.0 """ @prim_attr_register def __init__(self): """Initialize L2Loss"""
[docs]class DataFormatDimMap(PrimitiveWithInfer): """ Returns the dimension index in the destination data format given in the source data format. Args: src_format (str): An optional value for source data format. The format can be 'NHWC' and 'NCHW'. Default: 'NHWC'. dst_format (str): An optional value for destination data format. The format can be 'NHWC' and 'NCHW'. Default: 'NCHW'. Inputs: - **input_x** (Tensor) - A Tensor, each element is used as a dimension index of the source data format. The suggested values are in the range [-4, 4). Only supports int32. Outputs: Tensor, Return the dimension index in the given target data format, has the same data type and shape as the `input_x`. Raises: TypeError: If `src_format` or `dst_format` is not a str. TypeError: If `input_x` is not a Tensor whose dtype is not int32. Supported Platforms: ``Ascend`` Examples: >>> input_x = Tensor([0, 1, 2, 3], mindspore.int32) >>> dfdm = ops.DataFormatDimMap() >>> output = dfdm(input_x) >>> print(output) [0 3 1 2] """ @prim_attr_register def __init__(self, src_format='NHWC', dst_format='NCHW'): """Initialize DataFormatDimMap.""" valid_values = ['NHWC', 'NCHW'] self.src_format = validator.check_string(src_format, valid_values, "src_format", self.name) self.dst_format = validator.check_string(dst_format, valid_values, "dst_format", self.name) self.init_prim_io_names(inputs=['input_x'], outputs=['output']) def infer_shape(self, x_shape): return x_shape def infer_dtype(self, x_dtype): valid_dtypes = [mstype.int32] validator.check_tensor_dtype_valid("x", x_dtype, valid_dtypes, self.name) return x_dtype
[docs]class RNNTLoss(PrimitiveWithInfer): """ Computes the RNNTLoss and its gradient with respect to the softmax outputs. Args: blank_label (int): blank label. Default: 0. Inputs: - **acts** (Tensor) - Tensor of shape :math:`(B, T, U, V)`. Data type must be float16 or float32. - **labels** (Tensor) - Tensor of shape :math:`(B, U-1)`. Data type is int32. - **input_lengths** (Tensor) - Tensor of shape :math:`(B,)`. Data type is int32. - **label_lengths** (Tensor) - Tensor of shape :math:`(B,)`. Data type is int32. Outputs: - **costs** (Tensor) - Tensor of shape :math:`(B,)`. Data type is int32. - **grads** (Tensor) - Has the same shape and dtype as `acts`. Raises: TypeError: If `acts`, `labels`, `input_lengths` or `label_lengths` is not a Tensor. TypeError: If dtype of `acts` is neither float16 nor float32. TypeError: If dtype of `labels`, `input_lengths` or `label_lengths` is not int32. Supported Platforms: ``Ascend`` Examples: >>> B, T, U, V = 1, 2, 3, 5 >>> blank = 0 >>> acts = np.random.random((B, T, U, V)).astype(np.float32) >>> labels = np.array([[1, 2]]).astype(np.int32) >>> input_length = np.array([T] * B).astype(np.int32) >>> label_length = np.array([len(l) for l in labels]).astype(np.int32) >>> rnnt_loss = ops.RNNTLoss(blank_label=0) >>> costs, grads = rnnt_loss(Tensor(acts), Tensor(labels), Tensor(input_length), Tensor(label_length)) >>> print(costs.shape) (1,) >>> print(grads.shape) (1, 2, 3, 5) """ @prim_attr_register def __init__(self, blank_label=0): """Initialize RNNTLoss.""" validator.check_value_type('blank_label', blank_label, [int], self.name) self.init_prim_io_names(inputs=['acts', 'labels', 'input_length', 'label_length'], outputs=['costs', 'grads']) def infer_shape(self, acts_shape, labels_shape, input_length_shape, label_length_shape): validator.check_equal_int(len(acts_shape), 4, 'acts_rank', self.name) validator.check_equal_int(len(labels_shape), 2, 'labels_rank', self.name) validator.check_equal_int(len(input_length_shape), 1, 'input_length_rank', self.name) validator.check_equal_int(len(label_length_shape), 1, 'label_length_rank', self.name) validator.check('labels shape[0]', labels_shape[0], 'acts shape[0]', acts_shape[0], Rel.EQ, self.name) validator.check('labels shape[1]', labels_shape[1], 'acts shape[2]-1', acts_shape[2] - 1, Rel.EQ, self.name) validator.check('input_length size', input_length_shape[0], 'acts shape[0]', acts_shape[0], Rel.EQ, self.name) validator.check('label_length size', label_length_shape[0], 'acts shape[0]', acts_shape[0], Rel.EQ, self.name) costs_shape = (acts_shape[0],) return costs_shape, acts_shape def infer_dtype(self, acts_type, labels_type, input_length_type, label_length_type): validator.check_tensor_dtype_valid("acts_type", acts_type, [mstype.float32, mstype.float16], self.name) tuple(map(partial(validator.check_tensor_dtype_valid, valid_dtypes=(mstype.int32,), prim_name=self.name), ("labels", "input_length", "label_length"), (labels_type, input_length_type, label_length_type))) return acts_type, acts_type
[docs]class SGD(PrimitiveWithCheck): """ Computes the stochastic gradient descent. Momentum is optional. Nesterov momentum is based on the formula from paper `On the importance of initialization and momentum in deep learning <http://proceedings.mlr.press/v28/sutskever13.html>`_. Note: For more details, please refer to :class:`mindspore.nn.SGD`. Args: dampening (float): The dampening for momentum. Default: 0.0. weight_decay (float): Weight decay (L2 penalty). Default: 0.0. nesterov (bool): Enable Nesterov momentum. Default: False. Inputs: - **parameters** (Tensor) - Parameters to be updated. With float16 or float32 data type. - **gradient** (Tensor) - Gradient, with float16 or float32 data type. - **learning_rate** (Tensor) - Learning rate, a scalar tensor with float16 or float32 data type. e.g. Tensor(0.1, mindspore.float32) - **accum** (Tensor) - Accum(velocity) to be updated. With float16 or float32 data type. - **momentum** (Tensor) - Momentum, a scalar tensor with float16 or float32 data type. e.g. Tensor(0.1, mindspore.float32). - **stat** (Tensor) - States to be updated with the same shape as gradient, with float16 or float32 data type. Outputs: Tensor, parameters to be updated. Raises: TypeError: If `dampening` or `weight_decay` is not a float. TypeError: If `nesterov` is not a bool. TypeError: If `parameters`, `gradient`, `learning_rate`, `accum`, `momentum` or `stat` is not a Tensor. TypeError: If dtype of `parameters`, `gradient`, `learning_rate`, `accum`, `momentum` or `stat` is neither float16 nor float32. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> sgd = ops.SGD() >>> parameters = Tensor(np.array([2, -0.5, 1.7, 4]), mindspore.float32) >>> gradient = Tensor(np.array([1, -1, 0.5, 2]), mindspore.float32) >>> learning_rate = Tensor(0.01, mindspore.float32) >>> accum = Tensor(np.array([0.1, 0.3, -0.2, -0.1]), mindspore.float32) >>> momentum = Tensor(0.1, mindspore.float32) >>> stat = Tensor(np.array([1.5, -0.3, 0.2, -0.7]), mindspore.float32) >>> output = sgd(parameters, gradient, learning_rate, accum, momentum, stat) >>> print(output) (Tensor(shape=[4], dtype=Float32, value= [ 1.98989999e+00, -4.90300000e-01, 1.69520009e+00, 3.98009992e+00]),) """ @prim_attr_register def __init__(self, dampening=0.0, weight_decay=0.0, nesterov=False): """Initialize SGD.""" validator.check_value_type("nesterov", nesterov, [bool], self.name) if nesterov and dampening != 0: raise ValueError(f"For '{self.name}', the 'dampening' must be 0 when 'nesterov' is True, " f"but got 'dampening' is {dampening} and 'nesterov' is {nesterov}.") self.init_prim_io_names(inputs=['parameters', 'gradient', 'learning_rate', 'accum', 'momentum', 'stat'], outputs=['output']) self.add_prim_attr('side_effect_mem', True) def check_shape(self, parameters_shape, gradient_shape, learning_rate_shape, accum_shape, momentum_shape, stat_shape): validator.check_positive_int(len(parameters_shape), "parameters rank", self.name) validator.check_int(len(gradient_shape), 0, Rel.GE, f'gradient rank', self.name) validator.check_int(len(learning_rate_shape), 0, Rel.GE, f'learning rate rank', self.name) validator.check_positive_int(len(accum_shape), "accumulation rank", self.name) validator.check_int(len(momentum_shape), 0, Rel.GE, f'momentum rank', self.name) validator.check_int(len(stat_shape), 0, Rel.GE, f'stat rank', self.name) validator.check("gradient shape", gradient_shape, "stat shape", stat_shape, Rel.EQ, self.name) def check_dtype(self, parameters_dtype, gradient_dtype, learning_rate_dtype, accum_dtype, momentum_dtype, stat_dtype): tuple(map(partial(validator.check_tensor_dtype_valid, valid_dtypes=(mstype.float16, mstype.float32), prim_name=self.name), ("parameters", "gradient", "learning_rate", "accum", "momentum", "stat"), (parameters_dtype, gradient_dtype, learning_rate_dtype, accum_dtype, momentum_dtype, stat_dtype)))
[docs]class ApplyRMSProp(PrimitiveWithInfer): r""" Optimizer that implements the Root Mean Square prop(RMSProp) algorithm. Please refer to the usage in source code of :class:`mindspore.nn.RMSProp`. The updating formulas of ApplyRMSProp algorithm are as follows, .. math:: \begin{array}{ll} \\ s_{t+1} = \rho s_{t} + (1 - \rho)(\nabla Q_{i}(w))^2 \\ m_{t+1} = \beta m_{t} + \frac{\eta} {\sqrt{s_{t+1} + \epsilon}} \nabla Q_{i}(w) \\ w = w - m_{t+1} \end{array} where :math:`w` represents `var`, which will be updated. :math:`s_{t+1}` represents `mean_square`, :math:`s_{t}` is the last moment of :math:`s_{t+1}`, :math:`m_{t+1}` represents `moment`, :math:`m_{t}` is the last moment of :math:`m_{t+1}`. :math:`\rho` represents `decay`. :math:`\beta` is the momentum term, represents `momentum`. :math:`\epsilon` is a smoothing term to avoid division by zero, represents `epsilon`. :math:`\eta` represents `learning_rate`. :math:`\nabla Q_{i}(w)` represents `grad`. .. warning:: Note that in dense implementation of this algorithm, "mean_square" and "moment" will update even if "grad" is 0, but in this sparse implementation, "mean_square" and "moment" will not update in iterations during which "grad" is 0. Args: use_locking (bool): Whether to enable a lock to protect the variable and accumulation tensors from being updated. Default: False. Inputs: - **var** (Tensor) - Weights to be updated. - **mean_square** (Tensor) - Mean square gradients, must be the same type as `var`. - **moment** (Tensor) - Delta of `var`, must be the same type as `var`. - **learning_rate** (Union[Number, Tensor]) - Learning rate. Must be a float number or a scalar tensor with float16 or float32 data type. - **grad** (Tensor) - Gradient, must be the same type as `var`. - **decay** (float) - Decay rate. Only constant value is allowed. - **momentum** (float) - Momentum. Only constant value is allowed. - **epsilon** (float) - Ridge term. Only constant value is allowed. Outputs: Tensor, parameters to be updated. Raises: TypeError: If `use_locking` is not a bool. TypeError: If `var`, `mean_square`, `moment` or `decay` is not a Tensor. TypeError: If `learning_rate` is neither a Number nor a Tensor. TypeError: If dtype of `decay`, `momentum` or `epsilon` is not float. TypeError: If dtype of `learning_rate` is neither float16 nor float32. ValueError: If `decay`, `momentum` or `epsilon` is not a constant value. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.apply_rms_prop = ops.ApplyRMSProp() ... self.var = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="var") ... ... def construct(self, mean_square, moment, grad, decay, momentum, epsilon, lr): ... out = self.apply_rms_prop(self.var, mean_square, moment, lr, grad, decay, momentum, epsilon) ... return out ... >>> net = Net() >>> mean_square = Tensor(np.ones([2, 2]).astype(np.float32)) >>> moment = Tensor(np.ones([2, 2]).astype(np.float32)) >>> grad = Tensor(np.ones([2, 2]).astype(np.float32)) >>> output = net(mean_square, moment, grad, 0.0, 1e-10, 0.001, 0.01) >>> print(net.var.asnumpy()) [[0.990005 0.990005] [0.990005 0.990005]] """ @prim_attr_register def __init__(self, use_locking=False): """Initialize ApplyRMSProp.""" self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name) self.init_prim_io_names(inputs=['var', 'mean_square', 'moment', 'learning_rate', 'grad', 'rho', 'momentum', 'epsilon'], outputs=['output']) self.add_prim_attr('side_effect_mem', True) def infer_shape(self, var_shape, mean_square_shape, moment_shape, learning_rate_shape, grad_shape, decay_shape, momentum_shape, epsilon_shape): validator.check("var_shape", var_shape, "mean_square_shape", mean_square_shape, Rel.EQ, self.name) validator.check("var_shape", var_shape, "moment_shape", moment_shape, Rel.EQ, self.name) validator.check("var_shape", var_shape, "grad_shape", grad_shape, Rel.EQ, self.name) return var_shape def infer_dtype(self, var_dtype, mean_square_dtype, moment_dtype, learning_rate_dtype, grad_dtype, decay_dtype, momentum_dtype, epsilon_dtype): args = {"var": var_dtype, "mean_square": mean_square_dtype, "moment": moment_dtype, "grad": grad_dtype} validator.check_tensors_dtypes_same_and_valid(args, mstype.number_type, self.name) valid_dtypes = [mstype.float16, mstype.float32] args_decay = {"decay": decay_dtype, 'momentum': momentum_dtype, "epsilon": epsilon_dtype} validator.check_types_same_and_valid(args_decay, valid_dtypes, self.name) args_lr = {"learning_rate": learning_rate_dtype, "decay": decay_dtype} validator.check_scalar_or_tensor_types_same(args_lr, valid_dtypes, self.name, allow_mix=True) return var_dtype def infer_value(self, var, mean_square, moment, learning_rate, grad, decay, momentum, epsilon): if decay is None or momentum is None or epsilon is None: raise ValueError(f"For '{self.name}', 'decay', 'momentum' and 'epsilon' can not be None, " f"but got 'decay': {decay}, 'momentum': {momentum} and 'epsilon':{epsilon}.")
[docs]class ApplyCenteredRMSProp(Primitive): r""" Optimizer that implements the centered RMSProp algorithm. Please refer to the usage in source code of :class:`mindspore.nn.RMSProp`. The updating formulas of ApplyCenteredRMSProp algorithm are as follows, .. math:: \begin{array}{ll} \\ g_{t+1} = \rho g_{t} + (1 - \rho)\nabla Q_{i}(w) \\ s_{t+1} = \rho s_{t} + (1 - \rho)(\nabla Q_{i}(w))^2 \\ m_{t+1} = \beta m_{t} + \frac{\eta} {\sqrt{s_{t+1} - g_{t+1}^2 + \epsilon}} \nabla Q_{i}(w) \\ w = w - m_{t+1} \end{array} where :math:`w` represents `var`, which will be updated. :math:`g_{t+1}` represents `mean_gradient`, :math:`g_{t}` is the last moment of :math:`g_{t+1}`. :math:`s_{t+1}` represents `mean_square`, :math:`s_{t}` is the last moment of :math:`s_{t+1}`, :math:`m_{t+1}` represents `moment`, :math:`m_{t}` is the last moment of :math:`m_{t+1}`. :math:`\rho` represents `decay`. :math:`\beta` is the momentum term, represents `momentum`. :math:`\epsilon` is a smoothing term to avoid division by zero, represents `epsilon`. :math:`\eta` represents `learning_rate`. :math:`\nabla Q_{i}(w)` represents `grad`. Note: The difference between `ApplyCenteredRMSProp` and `ApplyRMSProp` is that the former uses the centered RMSProp algorithm, and the centered RRMSProp algorithm uses an estimate of the centered second moment(i.e., the variance) for normalization, as opposed to regular RMSProp, which uses the (uncertained) second moment. This often helps with training, but is slightly more expensive in terms of computation and memory. .. warning:: In dense implementation of this algorithm, `mean_gradient`, `mean_square`, and `moment` will update even if the `grad` is zero. But in this sparse implementation, `mean_gradient`, `mean_square`, and `moment` will not update in iterations during which the `grad` is zero. Args: use_locking (bool): Whether to enable a lock to protect the variable and accumulation tensors from being updated. Default: False. Inputs: - **var** (Tensor) - Weights to be updated. - **mean_gradient** (Tensor) - Mean gradients, must be the same type as `var`. - **mean_square** (Tensor) - Mean square gradients, must be the same type as `var`. - **moment** (Tensor) - Delta of `var`, must be the same type as `var`. - **grad** (Tensor) - Gradient, must be the same type as `var`. - **learning_rate** (Union[Number, Tensor]) - Learning rate. Must be a float number or a scalar tensor with float16 or float32 data type. - **decay** (float) - Decay rate. - **momentum** (float) - Momentum. - **epsilon** (float) - Ridge term. Outputs: Tensor, parameters to be updated. Raises: TypeError: If `use_locking` is not a bool. TypeError: If `var`, `mean_gradient`, `mean_square`, `moment` or `grad` is not a Tensor. TypeError: If `learing_rate` is neither a Number nor a Tensor. TypeError: If dtype of `learing_rate` is neither float16 nor float32. TypeError: If `decay`, `momentum` or `epsilon` is not a float. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.apply_centerd_rms_prop = ops.ApplyCenteredRMSProp() ... self.var = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="var") ... ... def construct(self, mean_grad, mean_square, moment, grad, decay, momentum, epsilon, lr): ... out = self.apply_centerd_rms_prop(self.var, mean_grad, mean_square, moment, grad, ... lr, decay, momentum, epsilon) ... return out ... >>> net = Net() >>> mean_grad = Tensor(np.ones([2, 2]).astype(np.float32)) >>> mean_square = Tensor(np.ones([2, 2]).astype(np.float32)) >>> moment = Tensor(np.ones([2, 2]).astype(np.float32)) >>> grad = Tensor(np.ones([2, 2]).astype(np.float32)) >>> output = net(mean_grad, mean_square, moment, grad, 0.0, 1e-10, 0.001, 0.01) >>> print(net.var.asnumpy()) [[0.68377227 0.68377227] [0.68377227 0.68377227]] """ @prim_attr_register def __init__(self, use_locking=False): """Initialize ApplyCenteredRMSProp.""" self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name) self.add_prim_attr('side_effect_mem', True)
[docs]class LayerNorm(Primitive): r""" Applies the Layer Normalization to the input tensor. This operator will normalize the input tensor on given axis. LayerNorm is described in the paper `Layer Normalization <https://arxiv.org/abs/1607.06450>`_. .. math:: y = \frac{x - mean}{\sqrt{variance + \epsilon}} * \gamma + \beta where :math:`\gamma` is scale, :math:`\beta` is bias, :math:`\epsilon` is epsilon. Args: begin_norm_axis (int): The begin axis of the `input_x` to apply LayerNorm, the value must be in [-1, rank(input)). Default: 1. begin_params_axis (int): The begin axis of the parameter input (`gamma`, `beta`) to apply LayerNorm, the value must be in [-1, rank(input)). Default: 1. epsilon (float): A value added to the denominator for numerical stability. Default: 1e-7. Inputs: - **input_x** (Tensor) - Tensor of shape :math:`(N, \ldots)`. The input of LayerNorm. - **gamma** (Tensor) - Tensor of shape :math:`(P_0, \ldots, P_\text{begin_params_axis})`. The learnable parameter `gamma` as the scale on norm. - **beta** (Tensor) - Tensor of shape :math:`(P_0, \ldots, P_\text{begin_params_axis})`. The learnable parameter `beta` as the scale on norm. Outputs: tuple[Tensor], tuple of 3 tensors, the normalized input and the updated parameters. - **output_x** (Tensor) - The normalized input, has the same type and shape as the `input_x`. The shape is :math:`(N, C)`. - **mean** (Tensor) - Tensor of shape :math:`(C,)`. - **variance** (Tensor) - Tensor of shape :math:`(C,)`. Raises: TypeError: If `begin_norm_axis` or `begin_params_axis` is not an int. TypeError: If `epsilon` is not a float. TypeError: If `input_x`, `gamma` or `beta` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Tensor(np.array([[1, 2, 3], [1, 2, 3]]), mindspore.float32) >>> gamma = Tensor(np.ones([3]), mindspore.float32) >>> beta = Tensor(np.ones([3]), mindspore.float32) >>> layer_norm = ops.LayerNorm() >>> output, mean, variance = layer_norm(input_x, gamma, beta) >>> print(output) [[-0.2247448 1. 2.2247448] [-0.2247448 1. 2.2247448]] >>> print(mean) [[2.] [2.]] >>> print(variance) [[0.6666667] [0.6666667]] """ @prim_attr_register def __init__(self, begin_norm_axis=1, begin_params_axis=1, epsilon=1e-7): """Initialize LayerNorm.""" validator.check_value_type('begin_norm_axis', begin_norm_axis, [int], self.name) validator.check_value_type('begin_params_axis', begin_params_axis, [int], self.name) validator.check_value_type('epsilon', epsilon, [float], self.name)
[docs]class L2Normalize(PrimitiveWithInfer): r""" L2 Normalization Operator. This operator will normalize the input using the given axis. The function is shown as follows: .. math:: \displaylines{{\text{output} = \frac{x}{\sqrt{\text{max}(\parallel x_i \parallel^p , \epsilon)} } } \\ {\parallel x_i \parallel^p = (\sum_{i}^{}\left | x_i \right | ^p )^{1/p}} } where :math:`\epsilon` is epsilon and :math:`\sum_{i}^{}\left | x_i \right | ^p` calculates along the dimension `axis`. Args: axis (Union[list(int), tuple(int), int]): The starting axis for the input to apply the L2 Normalization. Default: 0. epsilon (float): A small value added for numerical stability. Default: 1e-4. Inputs: - **x** (Tensor) - Input to compute the normalization. Tensor of shape :math:`(N, \ldots)`. Data type must be float16 or float32. Outputs: Tensor, with the same type and shape as the `x`. Raises: TypeError: If `axis` is not one of the following: list, tuple or int. TypeError: If `epsilon` is not a float. TypeError: If `x` is not a Tensor. TypeError: If dtype of `x` is neither float16 nor float32. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> l2_normalize = ops.L2Normalize() >>> x = Tensor(np.random.randint(-256, 256, (2, 3, 4)), mindspore.float32) >>> output = l2_normalize(x) >>> print(output.shape) (2, 3, 4) """ @prim_attr_register def __init__(self, axis=0, epsilon=1e-4): """Initialize L2Normalize.""" axis = [axis] if isinstance(axis, int) else axis validator.check_value_type('axis', axis, [list, tuple], self.name) validator.check_value_type('epsilon', epsilon, [int, float], self.name) self.add_prim_attr('axis', axis) self.init_attrs['axis'] = axis if len(axis) != 1: raise TypeError(f"For '{self.name}', the length of 'axis' must be 1, but got {len(axis)}, " f"later will support multiple axis!") self.axis = axis def infer_shape(self, input_x): dim = len(input_x) if dim == 0: raise ValueError(f"For '{self.name}', the dimension of 'x' must be greater than 0, but got {dim}") validator.check_int_range(self.axis[0], -dim, dim, Rel.INC_LEFT, 'axis value', self.name) return input_x def infer_dtype(self, input_x): validator.check_tensor_dtype_valid("input_x", input_x, [mstype.float16, mstype.float32], self.name) return input_x
[docs]class DropoutGenMask(Primitive): """ The DropoutGenMask interface is deprecated, please use the :class:`mindspore.ops.Dropout` instead. Supported Platforms: Deprecated """ @deprecated("1.5", "ops.Dropout", False) @prim_attr_register def __init__(self, Seed0=0, Seed1=0): """Initialize DropoutGenMask.""" self.init_prim_io_names(inputs=['shape', 'keep_prob'], outputs=['output']) validator.check_value_type("Seed0", Seed0, [int], self.name) validator.check_value_type("Seed1", Seed1, [int], self.name) self.add_prim_attr("_random_effect", True)
[docs]class DropoutDoMask(Primitive): """ The DropoutDoMask interface is deprecated, please use the :class:`mindspore.ops.Dropout` instead. Supported Platforms: Deprecated """ @deprecated("1.5", "ops.Dropout", False) @prim_attr_register def __init__(self): pass
[docs]class ResizeBilinear(PrimitiveWithInfer): r""" Resizes an image to a certain size using the bilinear interpolation. The resizing only affects the lower two dimensions which represent the height and width. The input images can be represented by different data types, but the data types of output images are always float32. Args: size (Union[tuple[int], list[int]]): A tuple or list of 2 int elements :math:`(new\_height, new\_width)`, the new size of the images. align_corners (bool): If true, rescale input by :math:`(new\_height - 1) / (height - 1)`, which exactly aligns the 4 corners of images and resized images. If false, rescale by :math:`new\_height / height`. Default: False. Inputs: - **x** (Tensor) - Image to be resized. Input images must be a 4-D tensor with shape :math:`(batch, channels, height, width)`, with data type of float32 or float16. Outputs: Tensor, resized image. 4-D with shape :math:`(batch, channels, new\_height, new\_width)`, with the same data type as input `x`. Raises: TypeError: If `size` is neither a tuple nor list. TypeError: If `align_corners` is not a bool. TypeError: If dtype of `x` is neither float16 nor float32. TypeError: If `x` is not a Tensor. ValueError: If length of shape of `x` is not equal to 4. Supported Platforms: ``Ascend`` ``CPU`` ``GPU`` Examples: >>> x = Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mindspore.float32) >>> resize_bilinear = ops.ResizeBilinear((5, 5)) >>> output = resize_bilinear(x) >>> print(output) [[[[1. 2. 3. 4. 5.] [1. 2. 3. 4. 5.] [1. 2. 3. 4. 5.] [1. 2. 3. 4. 5.] [1. 2. 3. 4. 5.]]]] """ @prim_attr_register def __init__(self, size, align_corners=False): """Initialize ResizeBilinear.""" validator.check_value_type("size", size, [tuple, list], self.name) validator.check_equal_int(len(size), 2, "size len", self.name) for item in size: validator.check_positive_int(item, 'size item', self.name) validator.check_value_type("size item", item, int, self.name) validator.check_value_type("align_corners", align_corners, [bool], self.name) for i, value in enumerate(size): validator.check_positive_int(value, f'{i}th value of size', self.name) def infer_shape(self, input_shape): validator.check("dimension of input", len(input_shape), "", 4, Rel.EQ, self.name) input_shape = list(input_shape) batch, channel, _, _ = input_shape out_shape = [batch, channel] for i in self.size: out_shape.append(int(i)) return out_shape def infer_dtype(self, input_dtype): validator.check_tensor_dtype_valid('input_dtype', input_dtype, [mstype.float16, mstype.float32], self.name) return input_dtype
[docs]class OneHot(Primitive): r""" Computes a one-hot tensor. The locations represented by indices in `indices` take value `on_value`, while all other locations take value `off_value`. Note: If the input indices is rank `N`, the output will have rank `N+1`. The new axis is created at dimension `axis`. Args: axis (int): Position to insert the value. e.g. If shape of `indices` is :math:`(N, C)`, and `axis` is -1, the output shape will be :math:`(N, C, D)`, If `axis` is 0, the output shape will be :math:`(D, N, C)`. Default: -1. Inputs: - **indices** (Tensor) - A tensor of indices. Tensor of shape :math:`(X_0, \ldots, X_n)`. Data type must be int32 or int64. - **depth** (int) - A scalar defining the depth of the one-hot dimension. - **on_value** (Tensor) - A value to fill in output when `indices[j] = i`. With data type of float16 or float32. - **off_value** (Tensor) - A value to fill in output when `indices[j] != i`. Has the same data type as `on_value`. Outputs: Tensor, one-hot tensor. Tensor of shape :math:`(X_0, \ldots, X_{axis}, \text{depth} ,X_{axis+1}, \ldots, X_n)`. Raises: TypeError: If `axis` or `depth` is not an int. TypeError: If dtype of `indices` is neither int32 nor int64. TypeError: If `indices`, `on_value` or `off_value` is not a Tensor. ValueError: If `axis` is not in range [-1, len(indices_shape)]. ValueError: If `depth` is less than 0. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> indices = Tensor(np.array([0, 1, 2]), mindspore.int32) >>> depth, on_value, off_value = 3, Tensor(1.0, mindspore.float32), Tensor(0.0, mindspore.float32) >>> onehot = ops.OneHot() >>> output = onehot(indices, depth, on_value, off_value) >>> print(output) [[1. 0. 0.] [0. 1. 0.] [0. 0. 1.]] """ @prim_attr_register def __init__(self, axis=-1): """Initialize OneHot.""" self.init_prim_io_names(inputs=['indices', 'depth', 'on_value', 'off_value'], outputs=['output']) validator.check_value_type("axis", axis, [int], self.name)
class Gelu(PrimitiveWithInfer): """ Same as operator GeLU. Gelu will be deprecated in the future. Please use GeLU instead. """ @deprecated("1.1", "GeLU", True) @prim_attr_register def __init__(self): """Initialize Gelu""" self.init_prim_io_names(inputs=['x'], outputs=['output']) def infer_shape(self, input_x): return input_x def infer_dtype(self, input_x): validator.check_tensor_dtype_valid("input_x", input_x, (mstype.float16, mstype.float32), self.name) return input_x
[docs]class GeLU(Primitive): r""" Gaussian Error Linear Units activation function. GeLU is described in the paper `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_. And also please refer to `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding <https://arxiv.org/abs/1810.04805>`_. GeLU is defined as follows: .. math:: \text{output} = 0.5 * x * (1 + tanh(x / \sqrt{2})), where :math:`tanh` is the hyperbolic tangent. Inputs: - **x** (Tensor) - Input to compute the GeLU with data type of float16 or float32. Outputs: Tensor, with the same type and shape as `x`. Raises: TypeError: If `x` is not a Tensor. TypeError: If dtype of `x` is neither float16 nor float32. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32) >>> gelu = ops.GeLU() >>> result = gelu(x) >>> print(result) [0.841192 1.9545976 2.9963627] """ @prim_attr_register def __init__(self): """Initialize GeLU""" self.init_prim_io_names(inputs=['x'], outputs=['output'])
class FastGelu(PrimitiveWithInfer): """ Same as operator FastGeLU. FastGelu will be deprecated in the future. Please use FastGeLU instead. """ @deprecated("1.1", "FastGeLU", True) @prim_attr_register def __init__(self): """Initialize FastGelu.""" self.init_prim_io_names(inputs=['x'], outputs=['output']) def infer_shape(self, input_x): return input_x def infer_dtype(self, input_x): validator.check_tensor_dtype_valid("input_x", input_x, (mstype.float16, mstype.float32), self.name) return input_x
[docs]class FastGeLU(Primitive): r""" Fast Gaussian Error Linear Units activation function. FastGeLU is defined as follows: .. math:: \text{output} = \frac {x} {1 + \exp(-1.702 * \left| x \right|)} * \exp(0.851 * (x - \left| x \right|)), where :math:`x` is the element of the input. Inputs: - **x** (Tensor) - Input to compute the FastGeLU with data type of float16 or float32. Outputs: Tensor, with the same type and shape as `x`. Raises: TypeError: If dtype of `x` is neither float16 nor float32. Supported Platforms: ``Ascend`` Examples: >>> x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) >>> fast_gelu = ops.FastGeLU() >>> output = fast_gelu(x) >>> print(output) [[-1.5418735e-01 3.9921875e+00 -9.7473649e-06] [ 1.9375000e+00 -1.0052517e-03 8.9824219e+00]] """ @prim_attr_register def __init__(self): """Initialize FastGeLU.""" self.init_prim_io_names(inputs=['x'], outputs=['output'])
[docs]class GetNext(Primitive): """ Returns the next element in the dataset queue. Note: The GetNext operation needs to be associated with network and it also depends on the init_dataset interface, it can't be used directly as a single operation. For details, please refer to :class:`mindspore.connect_network_with_dataset` source code. Args: types (list[:class:`mindspore.dtype`]): The type of the outputs. shapes (list[tuple[int]]): The dimensionality of the outputs. output_num (int): The output number, length of `types` and `shapes`. shared_name (str): The queue name of `init_dataset` interface. Inputs: No inputs. Outputs: tuple[Tensor], the output of dataset. The shape is described in `shapes` and the type is described in `types`. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import mindspore >>> from mindspore import ops >>> train_dataset = create_custom_dataset() >>> dataset_helper = mindspore.DatasetHelper(train_dataset, dataset_sink_mode=True) >>> dataset = dataset_helper.iter.dataset >>> dataset_types, dataset_shapes = dataset_helper.types_shapes() >>> queue_name = dataset.__transfer_dataset__.queue_name >>> get_next = ops.GetNext(dataset_types, dataset_shapes, len(dataset_types), queue_name) >>> data, label = get_next() >>> relu = ops.ReLU() >>> result = relu(data).asnumpy() >>> print(result.shape) (32, 1, 32, 32) """ @prim_attr_register def __init__(self, types, shapes, output_num, shared_name): """Initialize GetNext.""" validator.check_value_type("types", types, [list, tuple], self.name) validator.check_value_type("shapes", shapes, [list, tuple], self.name) validator.check("types length", len(types), "shapes length", len(shapes), Rel.EQ, self.name) validator.check_value_type("output_num", output_num, [int], self.name)
[docs]class PReLU(PrimitiveWithInfer): r""" Parametric Rectified Linear Unit activation function. PReLU is described in the paper `Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification <https://arxiv.org/abs/1502.01852>`_. Defined as follows: .. math:: prelu(x_i)= \max(0, x_i) + \min(0, w * x_i), where :math:`x_i` is an element of a channel of the input, `w` is the weight of the channel. Note: 0-D or 1-D input_x is not supported on Ascend. Inputs: - **x** (Tensor) - The first input tensor, representing the output of the preview layer. With data type of float16 or float32. The shape is :math:`(N, C, *)` where :math:`*` means, any number of additional dimensions. - **weight** (Tensor) - Weight Tensor. The data type is float16 or float32. The weight can only be a vector, and the length is the same as the number of channels C of the `input_x`. On GPU devices, when the input is a scalar, the shape is 1. Outputs: Tensor, with the same type as `x`. For detailed information, please refer to :class:`mindspore.nn.PReLU`. Raises: TypeError: If dtype of `x` or `weight` is neither float16 nor float32. TypeError: If the `x` or the `weight` is not a Tensor. ValueError: If the `x` is a 0-D or 1-D Tensor on Ascend. ValueError: If the `weight` is not a 1-D Tensor. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.prelu = ops.PReLU() ... def construct(self, x, weight): ... result = self.prelu(x, weight) ... return result ... >>> x = Tensor(np.arange(-6, 6).reshape((2, 3, 2)), mindspore.float32) >>> weight = Tensor(np.array([0.1, 0.6, -0.3]), mindspore.float32) >>> net = Net() >>> output = net(x, weight) >>> print(output) [[[-0.60 -0.50] [-2.40 -1.80] [ 0.60 0.30]] [[ 0.00 1.00] [ 2.00 3.00] [ 4.0 5.00]]] """ @prim_attr_register def __init__(self): pass def infer_shape(self, input_x_shape, weight_shape): input_x_dim = len(input_x_shape) if input_x_dim in (0, 1): if context.get_context("device_target") == "Ascend": raise ValueError(f"For '{self.name}', the dimension of 'x' can not be 0-D or 1-D when the platform is " f"\"Ascend\", but got dimension of 'x' is {input_x_dim}.") channel_num = 1 else: channel_num = input_x_shape[1] weight_dim = len(weight_shape) if weight_dim != 1: raise ValueError(f"For '{self.name}', the dimension of 'weight' should be 1, while got {weight_dim}.") if weight_shape[0] != 1 and weight_shape[0] != channel_num: raise ValueError(f"For '{self.name}', the first dimension of 'weight' should be (1,) or " f"it should be equal to number of channels: {channel_num}, but got {weight_shape}") return input_x_shape def infer_dtype(self, input_x_dtype, weight_dtype): valid_dtypes = (mstype.float16, mstype.float32) args = {"input_x": input_x_dtype, "weight": weight_dtype} if context.get_context("device_target") == "GPU": validator.check_tensors_dtypes_same_and_valid(args, valid_dtypes, self.name) else: validator.check_tensor_dtype_valid("input_x", input_x_dtype, valid_dtypes, self.name) validator.check_tensor_dtype_valid("weight", weight_dtype, valid_dtypes, self.name) return input_x_dtype
[docs]class LSTM(PrimitiveWithInfer): """ Performs the Long Short-Term Memory (LSTM) on the input. For detailed information, please refer to :class:`mindspore.nn.LSTM`. Args: input_size (int): Number of features of input. hidden_size (int): Number of features of hidden layer. num_layers (int): Number of layers of stacked LSTM. has_bias (bool): Whether the cell has bias `b_ih` and `b_hh`. bidirectional (bool): Specifies whether it is a bidirectional LSTM. dropout (float): If not 0, append `Dropout` layer on the outputs of each LSTM layer except the last layer. The range of dropout is [0.0, 1.0]. Inputs: - **input** (Tensor) - Tensor of shape (seq_len, batch_size, `input_size`) or (batch_size, seq_len, `input_size`). - **h** (tuple) - Tensor of shape (num_directions * `num_layers`, batch_size, `hidden_size`). - **c** (tuple) - Tensor of shape (num_directions * `num_layers`, batch_size, `hidden_size`). - **w** (Tensor) - A weight Tensor. Outputs: Tuple, a tuple contains (`output`, `h_n`, `c_n`, `reserve`, `state`). - **output** (Tensor) - Tensor of shape (seq_len, batch_size, num_directions * `hidden_size`). - **h_n** (Tensor) - Tensor of shape (num_directions * `num_layers`, batch_size, `hidden_size`). - **c_n** (Tensor) - Tensor of shape (num_directions * `num_layers`, batch_size, `hidden_size`). - **reserve** (Tensor) - Tensor of shape (r, 1). - **state** (Tensor) - Random number generator state and its shape is (s, 1). Raises: TypeError: If `input_size`, `hidden_size` or `num_layers` is not an int. TypeError: If `has_bias` or `bidirectional` is not a bool. TypeError: If `dropout` is not a float. ValueError: If `dropout` is not in range [0.0, 1.0]. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> input_size = 10 >>> hidden_size = 2 >>> num_layers = 1 >>> seq_len = 5 >>> batch_size = 2 >>> >>> net = ops.LSTM(input_size, hidden_size, num_layers, True, False, 0.0) >>> input_tensor = Tensor(np.ones([seq_len, batch_size, input_size]).astype(np.float32)) >>> h0 = Tensor(np.ones([num_layers, batch_size, hidden_size]).astype(np.float32)) >>> c0 = Tensor(np.ones([num_layers, batch_size, hidden_size]).astype(np.float32)) >>> w = Tensor(np.ones([112, 1, 1]).astype(np.float32)) >>> output, hn, cn, _, _ = net(input_tensor, h0, c0, w) >>> print(output) [[[0.9640267 0.9640267 ] [0.9640267 0.9640267 ]] [[0.9950539 0.9950539 ] [0.9950539 0.9950539 ]] [[0.99932843 0.99932843] [0.99932843 0.99932843]] [[0.9999084 0.9999084 ] [0.9999084 0.9999084 ]] [[0.9999869 0.9999869 ] [0.9999869 0.9999869 ]]] """ @prim_attr_register def __init__(self, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout): """Initialize LSTM.""" self.input_size = validator.check_positive_int(input_size, "input_size", self.name) self.hidden_size = validator.check_positive_int(hidden_size, "hidden_size", self.name) self.num_layers = validator.check_positive_int(num_layers, "num_layers", self.name) self.has_bias = validator.check_value_type("has_bias", has_bias, (bool,), self.name) self.bidirectional = validator.check_value_type("bidirectional", bidirectional, (bool,), self.name) self.dropout = validator.check_value_type("dropout", dropout, [float], self.name) self.dropout = validator.check_float_range(dropout, 0, 1, Rel.INC_BOTH, 'dropout', self.name) if bidirectional: self.num_directions = 2 else: self.num_directions = 1 def infer_shape(self, x_shape, h_shape, c_shape, w_shape): validator.check_equal_int(len(x_shape), 3, "x rank", self.name) validator.check_equal_int(x_shape[2], self.input_size, "x[2]", self.name) # h and c should be same shape validator.check_equal_int(len(h_shape), 3, "h rank", self.name) validator.check("h_shape", h_shape, "c_shape", c_shape, Rel.EQ, self.name) validator.check_int(h_shape[0], self.num_layers * self.num_directions, Rel.EQ, "h[0]", self.name) validator.check_equal_int(h_shape[1], x_shape[1], "h[1]", self.name) validator.check_int(h_shape[2], self.hidden_size, Rel.EQ, "h[2]", self.name) y_shape = (x_shape[0], x_shape[1], self.hidden_size * self.num_directions) # set arbitrary shape for reserved space reserved_shape = (1, 1) state_shape = (1, 1) return y_shape, h_shape, c_shape, reserved_shape, state_shape def infer_dtype(self, x_dtype, h_dtype, c_dtype, w_dtype): args = {'x': x_dtype, 'h': h_dtype, 'c': c_dtype, 'w': w_dtype} validator.check_tensors_dtypes_same_and_valid(args, (mstype.float32, mstype.float16), self.name) return x_dtype, x_dtype, x_dtype, x_dtype, x_dtype
[docs]class SigmoidCrossEntropyWithLogits(Primitive): r""" Uses the given logits to compute sigmoid cross entropy between the logits and the label. Measures the distribution error in discrete classification tasks where each class is independent and not mutually exclusive using cross entropy loss. Sets input logits as :math:`X`, input label as :math:`Y`, output as :math:`loss`. Then, .. math:: \begin{array}{ll} \\ p_{ij} = sigmoid(X_{ij}) = \frac{1}{1 + e^{-X_{ij}}} \\ loss_{ij} = -[Y_{ij} * ln(p_{ij}) + (1 - Y_{ij})ln(1 - p_{ij})] \end{array} Inputs: - **logits** (Tensor) - Input logits. Tensor of shape :math:`(N, *)` where :math:`*` means, any number of additional dimensions. - **label** (Tensor) - Ground truth label. With the same shape and type as `logits`. Outputs: Tensor, with the same shape and type as input `logits`. Raises: TypeError: If `logits` or `label` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> logits = Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]).astype(np.float32)) >>> labels = Tensor(np.array([[0.3, 0.8, 1.2], [-0.6, 0.1, 2.2]]).astype(np.float32)) >>> sigmoid = ops.SigmoidCrossEntropyWithLogits() >>> output = sigmoid(logits, labels) >>> print(output) [[ 0.6111007 0.5032824 0.26318604] [ 0.58439666 0.5530153 -0.4368139 ]] """ @prim_attr_register def __init__(self): """Initialize SigmoidCrossEntropyWithLogits""" self.init_prim_io_names(inputs=['predict', 'target'], outputs=['loss'])
[docs]class BCEWithLogitsLoss(PrimitiveWithInfer): r""" Adds sigmoid activation function to input `logits`, and uses the given logits to compute binary cross entropy between the logits and the label. Sets input logits as :math:`X`, input label as :math:`Y`, input weight as :math:`W`, output as :math:`L`. Then, .. math:: \begin{array}{ll} \\ p_{ij} = sigmoid(X_{ij}) = \frac{1}{1 + e^{-X_{ij}}} \\ L_{ij} = -[Y_{ij} * log(p_{ij}) + (1 - Y_{ij})log(1 - p_{ij})] \end{array} :math:`i` indicates the :math:`i^{th}` sample, :math:`j` indicates the category. Then, .. math:: \ell(x, y) = \begin{cases} L, & \text{if reduction} = \text{'none';}\\ \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\ \operatorname{sum}(L), & \text{if reduction} = \text{'sum'.} \end{cases} :math:`\ell` indicates the method of calculating the loss. There are three methods: the first method is to provide the loss value directly, the second method is to calculate the average value of all losses, and the third method is to calculate the sum of all losses. This operator will multiply the output by the corresponding weight. The tensor weight assigns different weights to each piece of data in the batch, and the tensor pos_weight adds corresponding weights to the positive examples of each category. In addition, it can trade off recall and precision by adding weights to positive examples. In the case of multi-label classification the loss can be described as: .. math:: \begin{array}{ll} \\ p_{ij,c} = sigmoid(X_{ij,c}) = \frac{1}{1 + e^{-X_{ij,c}}} \\ L_{ij,c} = -[P_{c}Y_{ij,c} * log(p_{ij,c}) + (1 - Y_{ij,c})log(1 - p_{ij,c})] \end{array} where c is the class number (c>1 for multi-label binary classification, c=1 for single-label binary classification), n is the number of the sample in the batch and :math:`p_c` is the weight of the positive answer for the class c. :math:`p_c>1` increases the recall, :math:`p_c<1` increases the precision. Args: reduction (str): Type of reduction to be applied to loss. The optional values are 'mean', 'sum', and 'none', not case sensitive. If 'none', do not perform reduction. Default:'mean'. Inputs: - **logits** (Tensor) - Input logits. Data type must be float16 or float32. Tensor of shape :math:`(N, *)` where :math:`*` means, any number of additional dimensions. - **label** (Tensor) - Ground truth label, has the same shape as `logits`. Data type must be float16 or float32. - **weight** (Tensor) - A rescaling weight applied to the loss of each batch element. It can be broadcast to a tensor with shape of `logits`. Data type must be float16 or float32. - **pos_weight** (Tensor) - A weight of positive examples. Must be a vector with length equal to the number of classes. It can be broadcast to a tensor with shape of `logits`. Data type must be float16 or float32. Outputs: Tensor or Scalar, if `reduction` is 'none', it's a tensor with the same shape and type as input `logits`. Otherwise, the output is a scalar. Raises: TypeError: If data type of any input is neither float16 nor float32. ValueError: If `weight` or `pos_weight` can not be broadcast to a tensor with shape of `logits`. ValueError: If `reduction` is not one of 'none', 'mean' or 'sum'. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> logits = Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]), mindspore.float32) >>> label = Tensor(np.array([[0.3, 0.8, 1.2], [-0.6, 0.1, 2.2]]), mindspore.float32) >>> weight = Tensor(np.array([1.0, 1.0, 1.0]), mindspore.float32) >>> pos_weight = Tensor(np.array([1.0, 1.0, 1.0]), mindspore.float32) >>> loss = ops.BCEWithLogitsLoss() >>> output = loss(logits, label, weight, pos_weight) >>> print(output) 0.3463612 """ @prim_attr_register def __init__(self, reduction='mean'): """Initialize BCEWithLogitsLoss""" self.reduction = validator.check_string(reduction, ['none', 'sum', 'mean'], 'reduction', self.name) def infer_shape(self, logits, label, weight, pos_weight): validator.check('logits_shape', logits, 'label_shape', label, Rel.EQ, self.name) reversed_weight_shape = tuple(reversed(weight)) reversed_label = tuple(reversed(logits)) for i, v in enumerate(reversed_weight_shape): if v not in (reversed_label[i], 1): raise ValueError(f"For {self.name}, the shapes of 'logits' and 'weight' can not broadcast. " f"'logits': {tuple(logits)}, 'weight' shape {tuple(weight)}.") reversed_pos_shape = tuple(reversed(pos_weight)) reversed_label = tuple(reversed(logits)) for i, v in enumerate(reversed_pos_shape): if v not in (reversed_label[i], 1): raise ValueError(f"For {self.name}, the shapes of 'logits' and 'pos_weight' can not broadcast. " f"'logits': {tuple(logits)}, 'pos_weight' shape {tuple(pos_weight)}.") if self.reduction in ('mean', 'sum'): shape = [] else: shape = logits return shape def infer_dtype(self, logits, label, weight, pos_weight): validator.check_tensor_dtype_valid('logits dtype', logits, [mstype.float16, mstype.float32], self.name) validator.check_tensor_dtype_valid('label dtype', label, [mstype.float16, mstype.float32], self.name) validator.check_tensor_dtype_valid('weight dtype', weight, [mstype.float16, mstype.float32], self.name) validator.check_tensor_dtype_valid('pos_weight dtype', pos_weight, [mstype.float16, mstype.float32], self.name) return logits
[docs]class Pad(PrimitiveWithInfer): r""" Pads the input tensor according to the paddings. For example, to pad only the last dimension of the input tensor, then pad has the form (padding_left,padding_right); to pad the last 2 dimensions of the input tensor, then use (padding_left,padding_right, padding_top,padding_bottom); to pad the last 3 dimensions, use (padding_left,padding_right, padding_top,padding_bottom padding_front,padding_back). .. math:: \begin{aligned} &\text{ input_x_shape} = (N_{1},N_{2},...,N_{n}) \\ &\begin{aligned} \text{output_shape = }(&N_{1}+paddings[0,0]+paddings[0,1], \\ & N_{2}+paddings[1,0]+paddings[1,1], \\ &... , \\ & N_{n}+paddings[n-1,0]+paddings[n-1,1]) \end{aligned} \end{aligned} Args: paddings (tuple): The shape of parameter `paddings` is (N, 2). N is the rank of input data. All elements of paddings are int type. For the input in `D` th dimension, paddings[D, 0] indicates how many sizes to be extended ahead of the input tensor in the `D` th dimension, and paddings[D, 1] indicates how many sizes to be extended behind the input tensor in the `D` th dimension. Inputs: - **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of additional dimensions. Outputs: Tensor, the tensor after padding. Raises: TypeError: If `paddings` is not a tuple. TypeError: If `input_x` is not a Tensor. ValueError: If shape of `paddings` is not :math:`(N, 2)`. ValueError: If paddings.size is not equal to 2 * len(input_x). Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32) >>> pad_op = ops.Pad(((1, 2), (2, 1))) >>> output = pad_op(input_x) >>> print(output) [[ 0. 0. 0. 0. 0. 0. ] [ 0. 0. -0.1 0.3 3.6 0. ] [ 0. 0. 0.4 0.5 -3.2 0. ] [ 0. 0. 0. 0. 0. 0. ] [ 0. 0. 0. 0. 0. 0. ]] """ @prim_attr_register def __init__(self, paddings): """Initialize Pad""" self.init_prim_io_names(inputs=['x'], outputs=['y']) if not isinstance(paddings, tuple): raise TypeError(f"For '{self.name}', the type of 'paddings' must be tuple, " f"but got {type(paddings)}.") for item in paddings: if len(item) != 2: raise ValueError(f"For '{self.name}', the shape of 'paddings' must be (n, 2), " f"but got {paddings}.") self.paddings = paddings def infer_shape(self, x_shape): validator.check_int(len(self.paddings), len(x_shape), Rel.EQ, 'paddings.shape', self.name) paddings = np.array(self.paddings) if not np.all(paddings >= 0): raise ValueError(f"For '{self.name}', all elements of paddings must be >= 0.") y_shape = () for i in range(int(paddings.size / 2)): y_shape += ((x_shape[i] + paddings[i, 0] + paddings[i, 1]),) return y_shape def infer_dtype(self, x_dtype): validator.check_subclass("input_x", x_dtype, mstype.tensor, self.name) return x_dtype
[docs]class MirrorPad(PrimitiveWithInfer): """ Pads the input tensor according to the paddings and mode. Args: mode (str): Specifies the padding mode. The optional values are "REFLECT" and "SYMMETRIC". Default: "REFLECT". Inputs: - **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of additional dimensions. - **paddings** (Tensor) - The paddings tensor. The value of `paddings` is a matrix(list), and its shape is (N, 2). N is the rank of input data. All elements of paddings are int type. For the input in the `D` th dimension, paddings[D, 0] indicates how many sizes to be extended ahead of the input tensor in the `D` th dimension, and paddings[D, 1] indicates how many sizes to be extended behind the input tensor in the `D` th dimension. Outputs: Tensor, the tensor after padding. - If `mode` is "REFLECT", it uses a way of symmetrical copying through the axis of symmetry to fill in. If the `input_x` is [[1,2,3], [4,5,6], [7,8,9]] and `paddings` is [[1,1], [2,2]], then the `Outputs` is [[6,5,4,5,6,5,4], [3,2,1,2,3,2,1], [6,5,4,5,6,5,4], [9,8,7,8,9,8,7], [6,5,4,5,6,5,4]]. For a more intuitive understanding, please see the example below. - If `mode` is "SYMMETRIC", the filling method is similar to the "REFLECT". It is also copied according to the symmetry axis, except that it includes the symmetry axis. If the `input_x` is [[1,2,3], [4,5,6], [7,8,9]] and `paddings` is [[1,1], [2,2]], then the `Outputs` is [[2,1,1,2,3,3,2], [2,1,1,2,3,3,2], [5,4,4,5,6,6,5], [8,7,7,8,9,9,8], [8,7,7,8,9,9,8]]. For a more intuitive understanding, please see the example below. Raises: TypeError: If `input_x` or `paddings` is not a Tensor. TypeError: If `mode` is not a str. ValueError: If paddings.size is not equal to 2 * len(input_x). Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import Tensor, nn, ops >>> # case1: mode="REFLECT" >>> class Net(nn.Cell): ... def __init__(self, mode): ... super(Net, self).__init__() ... self.pad = ops.MirrorPad(mode=mode) ... self.paddings = Tensor([[1, 1], [2, 2]]) ... def construct(self, input_x): ... return self.pad(input_x, self.paddings) ... >>> input_x = Tensor([[1,2,3], [4,5,6], [7,8,9]]) >>> pad = Net("REFLECT") >>> output = pad(input_x) >>> print(output) [[6 5 4 5 6 5 4] [3 2 1 2 3 2 1] [6 5 4 5 6 5 4] [9 8 7 8 9 8 7] [6 5 4 5 6 5 4]] >>> # case2: mode="SYMMETRIC" >>> pad = Net("SYMMETRIC") >>> output = pad(input_x) >>> print(output) [[2 1 1 2 3 3 2] [2 1 1 2 3 3 2] [5 4 4 5 6 6 5] [8 7 7 8 9 9 8] [8 7 7 8 9 9 8]] """ @prim_attr_register def __init__(self, mode='REFLECT'): """Initialize Pad""" validator.check_string(mode, ['REFLECT', 'SYMMETRIC'], 'mode', self.name) self.mode = mode self.set_const_input_indexes([1]) def __infer__(self, input_x, paddings): validator.check_subclass("input_x", input_x['dtype'], mstype.tensor, self.name) validator.check_subclass("paddings", paddings['dtype'], mstype.tensor, self.name) x_shape = list(input_x['shape']) if paddings['value'] is None: raise ValueError(f"For '{self.name}', paddings should be a Tensor with type of int64, " f"but got {paddings['value']}.") paddings_value = paddings['value'].asnumpy() paddings_size = paddings_value.size validator.check_int(paddings_size, len(x_shape) * 2, Rel.EQ, 'paddings.shape', self.name) if not np.all(paddings_value >= 0): raise ValueError(f"For '{self.name}', all elements of 'paddings' must be >= 0.") adjust = 0 if self.mode == 'SYMMETRIC': adjust = 1 for i in range(0, int(paddings_size / 2)): if (paddings_value[i, 0] >= x_shape[i] + adjust) or (paddings_value[i, 1] >= x_shape[i] + adjust): msg = "x_shape[D] + 1" if adjust == 1 else "x_shape[D]" paddings_info_value = paddings['value'] raise ValueError(f"For '{self.name}', both paddings[D, 0] and paddings[D, 1] must be less than {msg}, " f"but got paddings[{i}, 0]: {paddings_info_value[i, 0]}, " f"paddings[{i}, 1]: {paddings_info_value[i, 1]}, x_shape[{i}]: {x_shape[i]}.") y_shape = () for i in range(0, int(paddings_size / 2)): y_shape += ((x_shape[i] + paddings_value[i, 0] + paddings_value[i, 1]),) return {'shape': y_shape, 'dtype': input_x['dtype'], 'value': None}
[docs]class ComputeAccidentalHits(PrimitiveWithCheck): r""" Compute accidental hits of sampled classes which match target classes. When a target class matches the sample class, we call it "accidental hit". The result of calculating accidental hits contain three parts (index, id, weight), where index represents the row number in true_classes, and id represents the position in sampled_candidates, the weight is FLOAT_MAX. FLOAT_MAX indicates the max value in the type of Float Args: num_true (int): The number of target classes per training example. Default: 1. Inputs: - **true_classes** (Tensor) - The target classes. With data type of int32 or int64 and shape :math:`(batch\_size, num\_true)`. - **sampled_candidates** (Tensor) - The Candidate sampling results of operators, types of training samples, with data type of int32 or int64 and shape :math:`(num\_sampled, )`. Outputs: Tuple of 3 Tensors. - **indices** (Tensor) - A Tensor with shape :math:`(num\_accidental\_hits, )`, with the same type as `true_classes`. - **ids** (Tensor) - A Tensor with shape :math:`(num\_accidental\_hits, )`, with the same type as `true_classes`. - **weights** (Tensor) - A Tensor with shape :math:`(num\_accidental\_hits, )`, with the type float32. Raises: TypeError: If dtype of `num_true` is not int. TypeError: If `true_classes` or `sampled_candidates` is not a Tensor. TypeError: If dtype of `true_classes` or `sampled_candidates` is neither int32 nor int64. Supported Platforms: ``Ascend`` Examples: >>> true_classes = np.array([[1, 2], [0, 4], [3, 3]]) >>> sampled_candidates = np.array([0, 1, 2, 3, 4]) >>> sampler = ops.ComputeAccidentalHits(2) >>> indices, ids, weights = sampler(Tensor(true_classes), Tensor(sampled_candidates)) >>> print(indices, ids, weights) [0 0 1 1 2 2] [1 2 0 4 3 3] [-3.4028235e+38 -3.4028235e+38 -3.4028235e+38 -3.4028235e+38 -3.4028235e+38 -3.4028235e+38] """ @prim_attr_register def __init__(self, num_true=1): """Initialize ComputeAccidentalHits""" self.init_prim_io_names(inputs=['true_classes', 'sampled_candidates'], outputs=['indices', 'ids', 'weights']) validator.check_value_type("num_true", num_true, [int], self.name) validator.check_number("num_true", num_true, 1, Rel.GE, self.name) self.num_true = num_true def check_shape(self, true_classes_shape, sampled_candidates_shape): validator.check_int(len(true_classes_shape), 2, Rel.EQ, 'dim of true_classes', self.name) validator.check_int(len(sampled_candidates_shape), 1, Rel.EQ, 'dim of sampled_candidates', self.name) validator.check("true_classes shape[1]", true_classes_shape[1], "num_true", self.num_true, Rel.EQ, self.name) indices_len = -1 return (indices_len,), (indices_len,), (indices_len,) def check_dtype(self, true_classes_type, sampled_candidates_type): validator.check_subclass("true_classes_type", true_classes_type, mstype.tensor, self.name) validator.check_subclass("sampled_candidates_type", sampled_candidates_type, mstype.tensor, self.name) valid_types = (mstype.int32, mstype.int64) validator.check_tensor_dtype_valid("true_classes_type", true_classes_type, valid_types, self.name) validator.check_tensor_dtype_valid("sampled_candidates_type", sampled_candidates_type, valid_types, self.name) weights_type = mstype.float32 return true_classes_type, true_classes_type, weights_type
[docs]class ROIAlign(PrimitiveWithInfer): r""" Computes the Region of Interest (RoI) Align operator. The operator computes the value of each sampling point by bilinear interpolation from the nearby grid points on the feature map. No quantization is performed on any coordinates involved in the RoI, its bins, or the sampling points. The details of (RoI) Align operator are described in `Mask R-CNN <https://arxiv.org/abs/1703.06870>`_. Args: pooled_height (int): The output features height. pooled_width (int): The output features width. spatial_scale (float): A scaling factor that maps the raw image coordinates to the input feature map coordinates. Suppose the height of a RoI is `ori_h` in the raw image and `fea_h` in the input feature map, the `spatial_scale` must be `fea_h / ori_h`. sample_num (int): Number of sampling points. Default: 2. roi_end_mode (int): Number must be 0 or 1. Default: 1. Inputs: - **features** (Tensor) - The input features, whose shape must be :math:`(N, C, H, W)`. - **rois** (Tensor) - The shape is :math:`(rois\_n, 5)`. With data type of float16 or float32. `rois_n` represents the number of RoI. The size of the second dimension must be `5` and the `5` colunms are :math:`(image\_index, top\_left\_x, top\_left\_y, bottom\_right\_x, bottom\_right\_y)`. `image_index` represents the index of image. `top_left_x` and `top_left_y` represent the `x, y` coordinates of the top left corner of corresponding RoI, respectively. `bottom_right_x` and `bottom_right_y` represent the `x, y` coordinates of the bottom right corner of corresponding RoI, respectively. Outputs: Tensor, the shape is :math:`(rois\_n, C, pooled\_height, pooled\_width)`. Raises: TypeError: If `pooled_height`, `pooled_width`, `sample_num` or `roi_end_mode` is not an int. TypeError: If `spatial_scale` is not a float. TypeError: If `features` or `rois` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> features = Tensor(np.array([[[[1., 2.], [3., 4.]]]]), mindspore.float32) >>> rois = Tensor(np.array([[0, 0.2, 0.3, 0.2, 0.3]]), mindspore.float32) >>> roi_align = ops.ROIAlign(2, 2, 0.5, 2) >>> output = roi_align(features, rois) >>> print(output) [[[[1.775 2.025] [2.275 2.525]]]] """ @prim_attr_register def __init__(self, pooled_height, pooled_width, spatial_scale, sample_num=2, roi_end_mode=1): """Initialize ROIAlign""" validator.check_value_type("pooled_height", pooled_height, [int], self.name) validator.check_value_type("pooled_width", pooled_width, [int], self.name) validator.check_value_type("spatial_scale", spatial_scale, [float], self.name) validator.check_value_type("sample_num", sample_num, [int], self.name) validator.check_value_type("roi_end_mode", roi_end_mode, [int], self.name) validator.check_int_range(roi_end_mode, 0, 1, Rel.INC_BOTH, "roi_end_mode", self.name) self.pooled_height = pooled_height self.pooled_width = pooled_width self.spatial_scale = spatial_scale self.sample_num = sample_num self.roi_end_mode = roi_end_mode def infer_shape(self, inputs_shape, rois_shape): validator.check("input shape rank", len(inputs_shape), "", 4, Rel.LE, self.name) return [rois_shape[0], inputs_shape[1], self.pooled_height, self.pooled_width] def infer_dtype(self, inputs_type, rois_type): valid_dtypes = (mstype.float16, mstype.float32) validator.check_tensor_dtype_valid("inputs_type", inputs_type, valid_dtypes, self.name) validator.check_tensor_dtype_valid("rois_type", rois_type, valid_dtypes, self.name) return inputs_type
[docs]class Adam(Primitive): r""" Updates gradients by the Adaptive Moment Estimation (Adam) algorithm. The Adam algorithm is proposed in `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_. For more details, please refer to :class:`mindspore.nn.Adam`. The updating formulas are as follows, .. math:: \begin{array}{ll} \\ m = \beta_1 * m + (1 - \beta_1) * g \\ v = \beta_2 * v + (1 - \beta_2) * g * g \\ l = \alpha * \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \\ w = w - l * \frac{m}{\sqrt{v} + \epsilon} \end{array} :math:`m` represents the 1st moment vector, :math:`v` represents the 2nd moment vector, :math:`g` represents `gradient`, :math:`l` represents scaling factor `lr`, :math:`\beta_1, \beta_2` represent `beta1` and `beta2`, :math:`t` represents updating step while :math:`beta_1^t(\beta_1^{t})` and :math:`beta_2^t(\beta_2^{t})` represent `beta1_power` and `beta2_power`, :math:`\alpha` represents `learning_rate`, :math:`w` represents `var`, :math:`\epsilon` represents `epsilon`. Args: use_locking (bool): Whether to enable a lock to protect variable tensors from being updated. If true, updates of the var, m, and v tensors will be protected by a lock. If false, the result is unpredictable. Default: False. use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients. If true, update the gradients using NAG. If false, update the gradients without using NAG. Default: False. Inputs: - **var** (Tensor) - Weights to be updated. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. The data type can be float16 or float32. - **m** (Tensor) - The 1st moment vector in the updating formula, the shape and data type value should be the same as `var`. - **v** (Tensor) - the 2nd moment vector in the updating formula, the shape and data type value should be the same as `var`. Mean square gradients with the same type as `var`. - **beta1_power** (float) - :math:`beta_1^t(\beta_1^{t})` in the updating formula, the data type value should be the same as `var`. - **beta2_power** (float) - :math:`beta_2^t(\beta_2^{t})` in the updating formula, the data type value should be the same as `var`. - **lr** (float) - :math:`l` in the updating formula. The paper suggested value is :math:`10^{-8}`, the data type value should be the same as `var`. - **beta1** (float) - The exponential decay rate for the 1st moment estimations, the data type value should be the same as `var`. The paper suggested value is :math:`0.9` - **beta2** (float) - The exponential decay rate for the 2nd moment estimations, the data type value should be the same as `var`. The paper suggested value is :math:`0.999` - **epsilon** (float) - Term added to the denominator to improve numerical stability. - **gradient** (Tensor) - Gradient, has the same shape and data type as `var`. Outputs: Tuple of 3 Tensor, the updated parameters. - **var** (Tensor) - The same shape and data type as Inputs `var`. - **m** (Tensor) - The same shape and data type as Inputs `m`. - **v** (Tensor) - The same shape and data type as Inputs `v`. Raises: TypeError: If neither `use_locking` nor `use_nesterov` is a bool. TypeError: If `var`, `m` or `v` is not a Tensor. TypeError: If `beta1_power`, `beta2_power1`, `lr`, `beta1`, `beta2`, `epsilon` or `gradient` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.apply_adam = ops.Adam() ... self.var = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="var") ... self.m = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="m") ... self.v = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="v") ... def construct(self, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad): ... out = self.apply_adam(self.var, self.m, self.v, beta1_power, beta2_power, lr, beta1, beta2, ... epsilon, grad) ... return out ... >>> net = Net() >>> gradient = Tensor(np.ones([2, 2]).astype(np.float32)) >>> output = net(0.9, 0.999, 0.001, 0.9, 0.999, 1e-8, gradient) >>> print(net.var.asnumpy()) [[0.9996838 0.9996838] [0.9996838 0.9996838]] """ @prim_attr_register def __init__(self, use_locking=False, use_nesterov=False): """Initialize Adam.""" validator.check_value_type("use_locking", use_locking, [bool], self.name) validator.check_value_type("use_nesterov", use_nesterov, [bool], self.name) self.add_prim_attr('side_effect_mem', True)
[docs]class AdamWeightDecay(PrimitiveWithInfer): r""" Updates gradients by the Adaptive Moment Estimation algorithm with weight decay (AdamWeightDecay). The Adam algorithm is proposed in `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_. The AdamWeightDecay variant was proposed in `Decoupled Weight Decay Regularization <https://arxiv.org/abs/1711.05101>`_. The updating formulas are as follows, .. math:: \begin{array}{ll} \\ m = \beta_1 * m + (1 - \beta_1) * g \\ v = \beta_2 * v + (1 - \beta_2) * g * g \\ update = \frac{m}{\sqrt{v} + \epsilon} \\ update = \begin{cases} update + weight\_decay * w & \text{ if } weight\_decay > 0 \\ update & \text{ otherwise } \end{cases} \\ w = w - lr * update \end{array} :math:`m` represents the 1st moment vector, :math:`v` represents the 2nd moment vector, :math:`g` represents `gradient`, :math:`\beta_1, \beta_2` represent `beta1` and `beta2`, :math:`lr` represents `learning_rate`, :math:`w` represents `var`, :math:`decay` represents `weight_decay`, :math:`\epsilon` represents `epsilon`. Args: use_locking (bool): Whether to enable a lock to protect variable tensors from being updated. If true, updates of the var, m, and v tensors will be protected by a lock. If false, the result is unpredictable. Default: False. Inputs: - **var** (Tensor) - Weights to be updated. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. The data type can be float16 or float32. - **m** (Tensor) - The 1st moment vector in the updating formula, the shape and data type value should be the same as `var`. - **v** (Tensor) - the 2nd moment vector in the updating formula, the shape and data type value should be the same as `var`. Mean square gradients with the same type as `var`. - **lr** (float) - :math:`l` in the updating formula. The paper suggested value is :math:`10^{-8}`, the data type value should be the same as `var`. - **beta1** (float) - The exponential decay rate for the 1st moment estimations, the data type value should be the same as `var`. The paper suggested value is :math:`0.9` - **beta2** (float) - The exponential decay rate for the 2nd moment estimations, the data type value should be the same as `var`. The paper suggested value is :math:`0.999` - **epsilon** (float) - Term added to the denominator to improve numerical stability. - **decay** (float) - The weight decay value, must be a scalar tensor with float data type. Default: 0.0. - **gradient** (Tensor) - Gradient, has the same shape and data type as `var`. Outputs: Tuple of 3 Tensor, the updated parameters. - **var** (Tensor) - The same shape and data type as `var`. - **m** (Tensor) - The same shape and data type as `m`. - **v** (Tensor) - The same shape and data type as `v`. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> import mindspore.nn as nn >>> from mindspore import Tensor, Parameter, ops >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.adam_weight_decay = ops.AdamWeightDecay() ... self.var = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="var") ... self.m = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="m") ... self.v = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="v") ... def construct(self, lr, beta1, beta2, epsilon, decay, grad): ... out = self.adam_weight_decay(self.var, self.m, self.v, lr, beta1, beta2, ... epsilon, decay, grad) ... return out >>> net = Net() >>> gradient = Tensor(np.ones([2, 2]).astype(np.float32)) >>> output = net(0.001, 0.9, 0.999, 1e-8, 0.0, gradient) >>> print(net.var.asnumpy()) [[0.999 0.999] [0.999 0.999]] """ @prim_attr_register def __init__(self, use_locking=False): """Initialize AdamWeightDecay.""" self.add_prim_attr('side_effect_mem', True) validator.check_value_type("use_locking", use_locking, [bool], self.name) def infer_shape(self, var_shape, m_shape, v_shape, lr_shape, beta1_shape, beta2_shape, epsilon_shape, decay_shape, grad_shape): validator.check("var_shape", var_shape, "m_shape", m_shape, Rel.EQ, self.name) validator.check("var_shape", var_shape, "v_shape", v_shape, Rel.EQ, self.name) validator.check("var_shape", var_shape, "grad_shape", grad_shape, Rel.EQ, self.name) return var_shape, m_shape, v_shape def infer_dtype(self, var_dtype, m_dtype, v_dtype, lr_dtype, beta1_dtype, beta2_dtype, epsilon_dtype, decay_dtype, grad_dtype): args = {"var": var_dtype, "m": m_dtype, "v": v_dtype, "grad": grad_dtype} validator.check_tensors_dtypes_same_and_valid(args, mstype.number_type, self.name) args = {"lr": lr_dtype, "beta1": beta1_dtype, "beta2": beta2_dtype, "epsilon": epsilon_dtype, "decay": decay_dtype} validator.check_scalar_or_tensor_types_same(args, [mstype.float32], self.name, True) return var_dtype, m_dtype, v_dtype
[docs]class AdamNoUpdateParam(PrimitiveWithInfer): r""" Updates gradients by the Adaptive Moment Estimation (Adam) algorithm. This operator do not update the parameter, but calculate the value that should be added to the parameter instead. The Adam algorithm is proposed in `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_. The updating formulas are as follows, .. math:: \begin{array}{ll} \\ m = \beta_1 * m + (1 - \beta_1) * g \\ v = \beta_2 * v + (1 - \beta_2) * g * g \\ l = \alpha * \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \\ \Delta{w} = - l * \frac{m}{\sqrt{v} + \epsilon} \end{array} :math:`m` represents the 1st moment vector, :math:`v` represents the 2nd moment vector, :math:`g` represents `gradient`, :math:`l` represents scaling factor `lr`, :math:`\beta_1, \beta_2` represent `beta1` and `beta2`, :math:`t` represents updating step while :math:`beta_1^t(\beta_1^{t})` and :math:`beta_2^t(\beta_2^{t})` represent `beta1_power` and `beta2_power`, :math:`\alpha` represents `learning_rate`, :math:`w` represents the parameter to be updated, :math:`\epsilon` represents `epsilon`. Args: use_locking (bool): Whether to enable a lock to protect variable tensors from being updated. If true, updates of the var, m, and v tensors will be protected by a lock. If false, the result is unpredictable. Default: False. use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients. If true, update the gradients using NAG. If false, update the gradients without using NAG. Default: False. Inputs: - **m** (Tensor) - The 1st moment vector in the updating formula. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. The data type must be float32. - **v** (Tensor) - the 2nd moment vector in the updating formula. The shape must be the same as `m`. The data type must be float32. - **beta1_power** (Tensor) - :math:`beta_1^t(\beta_1^{t})` in the updating formula. The shape is :math:`(1, )` and the data type must be float32. - **beta2_power** (Tensor) - :math:`beta_2^t(\beta_2^{t})` in the updating formula. The shape is :math:`(1, )` and the data type must be float32. - **lr** (Tensor) - :math:`l` in the updating formula. The shape is :math:`(1, )` and the data type must be float32. - **beta1** (Tensor) - The exponential decay rate for the 1st moment estimations. The shape is :math:`(1, )` and the data type must be float32. - **beta2** (Tensor) - The exponential decay rate for the 2nd moment estimations. The shape is :math:`(1, )` and the data type must be float32. - **epsilon** (Tensor) - Term added to the denominator to improve numerical stability. The shape is :math:`(1, )` and the data type must be float32. - **gradient** (Tensor) - Gradient, the shape must be the same as `m`, the data type must be float32. Outputs: Tensor, whose shape and data type are the same with Inputs `gradient`, is a value that should be added to the parameter to be updated. Raises: TypeError: If neither `use_locking` nor `use_nesterov` is a bool. TypeError: If `m`, `v`, `beta1_power`, `beta2_power1`, `lr`, `beta1`, `beta2`, `epsilon` or `gradient` is not a Tensor. Supported Platforms: ``CPU`` Examples: >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.adam = ops.AdamNoUpdateParam() ... self.m = Parameter(Tensor(np.array([[0.1, 0.1, 0.1], [0.2, 0.2, 0.2]]).astype(np.float32)), ... name="m") ... self.v = Parameter(Tensor(np.array([[0.1, 0.1, 0.1], [0.2, 0.2, 0.2]]).astype(np.float32)), ... name="v") ... def construct(self, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad): ... out = self.adam(self.m, self.v, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad) ... return out >>> net = Net() >>> beta1_power = Tensor(0.9, ms.float32) >>> beta2_power = Tensor(0.999, ms.float32) >>> lr = Tensor(0.001, ms.float32) >>> beta1 = Tensor(0.9, ms.float32) >>> beta2 = Tensor(0.999, ms.float32) >>> epsilon = Tensor(1e-8, ms.float32) >>> gradient = Tensor(np.array([[0.1, 0.1, 0.1], [0.1, 0.1, 0.1]]).astype(np.float32)) >>> result = net(beta1_power, beta2_power, lr, beta1, beta2, epsilon, gradient) >>> print(result) [[-0.00010004 -0.00010004 -0.00010004] [-0.00013441 -0.00013441 -0.00013441]] """ @prim_attr_register def __init__(self, use_locking=False, use_nesterov=False): """Initialize AdamNoUpdateParam.""" validator.check_value_type("use_locking", use_locking, [bool], self.name) validator.check_value_type("use_nesterov", use_nesterov, [bool], self.name) def infer_shape(self, m_shape, v_shape, beta1_power_shape, beta2_power_shape, lr_shape, beta1_shape, beta2_shape, epsilon_shape, grad_shape): validator.check("grad_shape", grad_shape, "m_shape", m_shape, Rel.EQ, self.name) validator.check("grad_shape", grad_shape, "v_shape", v_shape, Rel.EQ, self.name) return grad_shape def infer_dtype(self, m_dtype, v_dtype, beta1_power_dtype, beta2_power_dtype, lr_dtype, beta1_dtype, beta2_dtype, epsilon_dtype, grad_dtype): args = {"m": m_dtype, "v": v_dtype, "grad": grad_dtype, "beta1_power": beta1_power_dtype, "beta2_power": beta2_power_dtype, 'lr': lr_dtype, "beta1": beta1_dtype, "beta2": beta2_dtype, "epsilon": epsilon_dtype} validator.check_tensors_dtypes_same_and_valid(args, [mstype.float32], self.name) return grad_dtype
[docs]class FusedSparseAdam(PrimitiveWithInfer): r""" Merges the duplicate value of the gradient and then updates parameters by the Adaptive Moment Estimation (Adam) algorithm. This operator is used when the gradient is sparse. The Adam algorithm is proposed in `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_. The updating formulas are as follows, .. math:: \begin{array}{ll} \\ m = \beta_1 * m + (1 - \beta_1) * g \\ v = \beta_2 * v + (1 - \beta_2) * g * g \\ l = \alpha * \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \\ w = w - l * \frac{m}{\sqrt{v} + \epsilon} \end{array} :math:`m` represents the 1st moment vector, :math:`v` represents the 2nd moment vector, :math:`g` represents `gradient`, :math:`l` represents scaling factor `lr`, :math:`\beta_1, \beta_2` represent `beta1` and `beta2`, :math:`t` represents updating step while :math:`\beta_1^t` and :math:`\beta_2^t` represent `beta1_power` and `beta2_power`, :math:`\alpha` represents `learning_rate`, :math:`w` represents `var`, :math:`\epsilon` represents `epsilon`. All of inputs except `indices` comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type. Args: use_locking (bool): Whether to enable a lock to protect variable tensors from being updated. If true, updates of the var, m, and v tensors will be protected by a lock. If false, the result is unpredictable. Default: False. use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients. If true, update the gradients using NAG. If false, update the gradients without using NAG. Default: False. Inputs: - **var** (Parameter) - Parameters to be updated with float32 data type. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. - **m** (Parameter) - The 1st moment vector in the updating formula, has the same shape and data type as `var`. - **v** (Parameter) - The 2nd moment vector in the updating formula, has the same shape and data type as `var`. Mean square gradients, has the same type as `var` with float32 data type. - **beta1_power** (Tensor) - :math:`beta_1^t` in the updating formula with float32 data type. The shape is :math:`(1, )`. - **beta2_power** (Tensor) - :math:`beta_2^t` in the updating formula with float32 data type. The shape is :math:`(1, )`. - **lr** (Tensor) - :math:`l` in the updating formula. With float32 data type. The shape is :math:`(1, )`. - **beta1** (Tensor) - The exponential decay rate for the 1st moment estimations with float32 data type. The shape is :math:`(1, )`. - **beta2** (Tensor) - The exponential decay rate for the 2nd moment estimations with float32 data type. The shape is :math:`(1, )`. - **epsilon** (Tensor) - Term added to the denominator to improve numerical stability with float32 data type. The shape is :math:`(1, )`. - **gradient** (Tensor) - Gradient, has the same data type as `var` and gradient.shape[1:] = var.shape[1:] if var.shape > 1. - **indices** (Tensor) - Gradient indices with int32 data type and indices.shape[0] = gradient.shape[0]. Outputs: Tuple of 3 Tensors, this operator will update the input parameters directly, the outputs are useless. - **var** (Tensor) - A Tensor with shape :math:`(1, )`. - **m** (Tensor) - A Tensor with shape :math:`(1, )`. - **v** (Tensor) - A Tensor with shape :math:`(1, )`. Raises: TypeError: If neither `use_locking` nor `use_neserov` is a bool. TypeError: If dtype of `var`, `m`, `v`, `beta1_power`, `beta2_power`, `lr`, `beta1`, `beta2`, `epsilon`, `gradient` or `indices` is not float32. RuntimeError: If the data type of all inputs except `indices` conversion of Parameter is not supported. Supported Platforms: ``Ascend`` ``CPU`` Examples: >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.sparse_apply_adam = ops.FusedSparseAdam() ... self.var = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="var") ... self.m = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="m") ... self.v = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="v") ... def construct(self, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad, indices): ... out = self.sparse_apply_adam(self.var, self.m, self.v, beta1_power, beta2_power, lr, beta1, beta2, ... epsilon, grad, indices) ... return out ... >>> net = Net() >>> beta1_power = Tensor(0.9, mindspore.float32) >>> beta2_power = Tensor(0.999, mindspore.float32) >>> lr = Tensor(0.001, mindspore.float32) >>> beta1 = Tensor(0.9, mindspore.float32) >>> beta2 = Tensor(0.999, mindspore.float32) >>> epsilon = Tensor(1e-8, mindspore.float32) >>> gradient = Tensor(np.array([[[0.1, 0.1]], [[0.1, 0.1]]]), mindspore.float32) >>> indices = Tensor([0, 1], mindspore.int32) >>> output = net(beta1_power, beta2_power, lr, beta1, beta2, epsilon, gradient, indices) >>> print(net.var.asnumpy()) [[[0.9997121 0.9997121 ]] [[0.9997121 0.9997121 ]] [[0.99971527 0.99971527]]] """ __mindspore_signature__ = ( sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('m', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('v', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('beta1_power', dtype=sig.sig_dtype.T), sig.make_sig('beta2_power', dtype=sig.sig_dtype.T), sig.make_sig('lr', dtype=sig.sig_dtype.T), sig.make_sig('beta1', dtype=sig.sig_dtype.T), sig.make_sig('beta2', dtype=sig.sig_dtype.T), sig.make_sig('epsilon', dtype=sig.sig_dtype.T), sig.make_sig('grad', dtype=sig.sig_dtype.T), sig.make_sig('indices', dtype=sig.sig_dtype.T1) ) @prim_attr_register def __init__(self, use_locking=False, use_nesterov=False): """Initialize FusedSparseAdam.""" validator.check_value_type("use_locking", use_locking, [bool], self.name) validator.check_value_type("use_nesterov", use_nesterov, [bool], self.name) self.init_prim_io_names(inputs=['var', 'm', 'v', 'beta1_power', 'beta2_power', 'lr', 'beta1', 'beta2', 'epsilon', 'grad', 'indices'], outputs=['var', 'm', 'v']) self.add_prim_attr('side_effect_mem', True) def infer_shape(self, var_shape, m_shape, v_shape, beta1_power_shape, beta2_power_shape, lr_shape, beta1_shape, beta2_shape, epsilon_shape, grad_shape, indices_shape): validator.check("var_shape", var_shape, "m_shape", m_shape, Rel.EQ, self.name) validator.check("var_shape", var_shape, "v_shape", v_shape, Rel.EQ, self.name) validator.check_int(len(indices_shape), 1, Rel.EQ, "indices rank", self.name) validator.check('grad_shape[0]', grad_shape[0], 'indices_shape[0]', indices_shape[0], Rel.EQ, self.name) if len(var_shape) > 1 and grad_shape != indices_shape + var_shape[1:]: raise ValueError(f"For '{self.name}', the shape of updates should be [] or " f"grad_shape = indices_shape + var_shape[1:], but got var_shape: {var_shape}, " f"indices_shape: {indices_shape}, grad_shape: {grad_shape}.") return [1], [1], [1] def infer_dtype(self, var_dtype, m_dtype, v_dtype, beta1_power_dtype, beta2_power_dtype, lr_dtype, beta1_dtype, beta2_dtype, epsilon_dtype, grad_dtype, indices_dtype): args = {"var": var_dtype, "m": m_dtype, "v": v_dtype, "grad": grad_dtype} validator.check_tensors_dtypes_same_and_valid(args, mstype.number_type, self.name) args = {"beta1_power": beta1_power_dtype, "beta2_power": beta2_power_dtype, 'lr': lr_dtype, "beta1": beta1_dtype, "beta2": beta2_dtype, "epsilon": epsilon_dtype} validator.check_scalar_or_tensor_types_same(args, [mstype.float16, mstype.float32], self.name, True) validator.check_tensor_dtype_valid("indices_dtype", indices_dtype, [mstype.int32], self.name) return var_dtype, m_dtype, v_dtype
[docs]class FusedSparseLazyAdam(PrimitiveWithInfer): r""" Merges the duplicate value of the gradient and then updates parameters by the Adaptive Moment Estimation (Adam) algorithm. This operator is used when the gradient is sparse. The behavior is not equivalent to the original Adam algorithm, as only the current indices parameters will be updated. The Adam algorithm is proposed in `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_. The updating formulas are as follows, .. math:: \begin{array}{ll} \\ m = \beta_1 * m + (1 - \beta_1) * g \\ v = \beta_2 * v + (1 - \beta_2) * g * g \\ l = \alpha * \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \\ w = w - l * \frac{m}{\sqrt{v} + \epsilon} \end{array} :math:`m` represents the 1st moment vector, :math:`v` represents the 2nd moment vector, :math:`g` represents `gradient`, :math:`l` represents scaling factor `lr`, :math:`\beta_1, \beta_2` represent `beta1` and `beta2`, :math:`t` represents updating step while :math:`\beta_1^t` and :math:`\beta_2^t` represent `beta1_power` and `beta2_power`, :math:`\alpha` represents `learning_rate`, :math:`w` represents `var`, :math:`\epsilon` represents `epsilon`. All of inputs except `indices` comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type. Args: use_locking (bool): Whether to enable a lock to protect variable tensors from being updated. If true, updates of the var, m, and v tensors will be protected by a lock. If false, the result is unpredictable. Default: False. use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients. If true, update the gradients using NAG. If false, update the gradients without using NAG. Default: False. Inputs: - **var** (Parameter) - Parameters to be updated with float32 data type. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. - **m** (Parameter) - The 1st moment vector in the updating formula, has the same shape and data type as `var`. - **v** (Parameter) - The 2nd moment vector in the updating formula, has the same shape and data type as `var`. Mean square gradients, has the same type as `var` with float32 data type. - **beta1_power** (Tensor) - :math:`beta_1^t` in the updating formula with float32 data type. The shape is :math:`(1, )`. - **beta2_power** (Tensor) - :math:`beta_2^t` in the updating formula with float32 data type. The shape is :math:`(1, )`. - **lr** (Tensor) - :math:`l` in the updating formula with float32 data type. The shape is :math:`(1, )`. - **beta1** (Tensor) - The exponential decay rate for the 1st moment estimations with float32 data type. The shape is :math:`(1, )`. - **beta2** (Tensor) - The exponential decay rate for the 2nd moment estimations with float32 data type. The shape is :math:`(1, )`. - **epsilon** (Tensor) - Term added to the denominator to improve numerical stability with float32 data type. The shape is :math:`(1, )`. - **gradient** (Tensor) - Gradient value with float32 data type and gradient.shape[1:] = var.shape[1:] if var.shape > 1. - **indices** (Tensor) - Gradient indices with int32 data type and indices.shape[0] = gradient.shape[0]. Outputs: Tuple of 3 Tensors, this operator will update the input parameters directly, the outputs are useless. - **var** (Tensor) - A Tensor with shape :math:`(1, )`. - **m** (Tensor) - A Tensor with shape :math:`(1, )`. - **v** (Tensor) - A Tensor with shape :math:`(1, )`. Raises: TypeError: If neither `use_locking` nor `use_nestrov` is a bool. TypeError: If dtype of `var`, `m`, `v`, `beta1_power`, `beta2_power`, `lr`, `beta1`, `beta2`, `epsilon` or gradient is not float32. TypeError: If dtype of `indices` is not int32. RuntimeError: If the data type of all inputs except `indices` conversion of Parameter is not supported. Supported Platforms: ``Ascend`` ``CPU`` Examples: >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.sparse_apply_lazyadam = ops.FusedSparseLazyAdam() ... self.var = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="var") ... self.m = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="m") ... self.v = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="v") ... def construct(self, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad, indices): ... out = self.sparse_apply_lazyadam(self.var, self.m, self.v, beta1_power, beta2_power, lr, beta1, ... beta2, epsilon, grad, indices) ... return out ... >>> net = Net() >>> beta1_power = Tensor(0.9, mindspore.float32) >>> beta2_power = Tensor(0.999, mindspore.float32) >>> lr = Tensor(0.001, mindspore.float32) >>> beta1 = Tensor(0.9, mindspore.float32) >>> beta2 = Tensor(0.999, mindspore.float32) >>> epsilon = Tensor(1e-8, mindspore.float32) >>> gradient = Tensor(np.array([[[0.1, 0.1]], [[0.1, 0.1]]]), mindspore.float32) >>> indices = Tensor([0, 1], mindspore.int32) >>> output = net(beta1_power, beta2_power, lr, beta1, beta2, epsilon, gradient, indices) >>> print(net.var.asnumpy()) [[[0.9997121 0.9997121 ]] [[0.9997121 0.9997121 ]] [[1. 1. ]]] """ __mindspore_signature__ = ( sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('m', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('v', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('beta1_power', dtype=sig.sig_dtype.T), sig.make_sig('beta2_power', dtype=sig.sig_dtype.T), sig.make_sig('lr', dtype=sig.sig_dtype.T), sig.make_sig('beta1', dtype=sig.sig_dtype.T), sig.make_sig('beta2', dtype=sig.sig_dtype.T), sig.make_sig('epsilon', dtype=sig.sig_dtype.T), sig.make_sig('grad', dtype=sig.sig_dtype.T), sig.make_sig('indices', dtype=sig.sig_dtype.T1) ) @prim_attr_register def __init__(self, use_locking=False, use_nesterov=False): """Initialize FusedSparseLazyAdam.""" validator.check_value_type("use_locking", use_locking, [bool], self.name) validator.check_value_type("use_nesterov", use_nesterov, [bool], self.name) self.init_prim_io_names(inputs=['var', 'm', 'v', 'beta1_power', 'beta2_power', 'lr', 'beta1', 'beta2', 'epsilon', 'grad', 'indices'], outputs=['var', 'm', 'v']) self.add_prim_attr('side_effect_mem', True) def infer_shape(self, var_shape, m_shape, v_shape, beta1_power_shape, beta2_power_shape, lr_shape, beta1_shape, beta2_shape, epsilon_shape, grad_shape, indices_shape): validator.check("var_shape", var_shape, "m_shape", m_shape, Rel.EQ, self.name) validator.check("var_shape", var_shape, "v_shape", v_shape, Rel.EQ, self.name) validator.check_int(len(indices_shape), 1, Rel.EQ, "indices rank", self.name) validator.check('grad_shape[0]', grad_shape[0], 'indices_shape[0]', indices_shape[0], Rel.EQ, self.name) if len(var_shape) > 1 and grad_shape != indices_shape + var_shape[1:]: raise ValueError(f"For '{self.name}', the shape of updates should be [] or " f"grad_shape = indices_shape + var_shape[1:], but got var_shape: {var_shape}, " f"indices_shape: {indices_shape}, grad_shape: {grad_shape}.") return [1], [1], [1] def infer_dtype(self, var_dtype, m_dtype, v_dtype, beta1_power_dtype, beta2_power_dtype, lr_dtype, beta1_dtype, beta2_dtype, epsilon_dtype, grad_dtype, indices_dtype): args = {"var": var_dtype, "m": m_dtype, "v": v_dtype, "grad": grad_dtype} validator.check_tensors_dtypes_same_and_valid(args, mstype.number_type, self.name) args = {"beta1_power": beta1_power_dtype, "beta2_power": beta2_power_dtype, 'lr': lr_dtype, "beta1": beta1_dtype, "beta2": beta2_dtype, "epsilon": epsilon_dtype} validator.check_scalar_or_tensor_types_same(args, [mstype.float16, mstype.float32], self.name, True) validator.check_tensor_dtype_valid("indices_dtype", indices_dtype, [mstype.int32], self.name) return var_dtype, m_dtype, v_dtype
[docs]class FusedSparseFtrl(PrimitiveWithInfer): """ Merges the duplicate value of the gradient and then updates relevant entries according to the FTRL-proximal scheme. All inputs except `indices` comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type. Args: lr (float): The learning rate value, must be positive. l1 (float): l1 regularization strength, must be greater than or equal to zero. l2 (float): l2 regularization strength, must be greater than or equal to zero. lr_power (float): Learning rate power controls how the learning rate decreases during training, must be less than or equal to zero. Use fixed learning rate if `lr_power` is zero. use_locking (bool): Use locks for updating operation if true . Default: False. Inputs: - **var** (Parameter) - The variable to be updated. The data type must be float32. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. - **accum** (Parameter) - The accumulation to be updated, must be same type and shape as `var`. - **linear** (Parameter) - the linear coefficient to be updated, must be same type and shape as `var`. - **grad** (Tensor) - A tensor of the same type as `var` and grad.shape[1:] = var.shape[1:] if var.shape > 1. - **indices** (Tensor) - A vector of indices into the first dimension of `var` and `accum`. The type must be int32 and indices.shape[0] = grad.shape[0]. Outputs: Tuple of 3 Tensor, this operator will update the input parameters directly, the outputs are useless. - **var** (Tensor) - A Tensor with shape :math:`(1, )`. - **accum** (Tensor) - A Tensor with shape :math:`(1, )`. - **linear** (Tensor) - A Tensor with shape :math:`(1, )`. Raises: TypeError: If `lr`, `l1`, `l2` or `lr_power` is not a float. ValueError: If shape of `lr_power` less than or equal to zero. TypeError: If dtype of `var` is not float32. TypeError: If dtype of `indices` is not int32. TypeError: If shape of `accum`, `linear` or `grad` is not same as `var`. TypeError: If shape of `indices` is not same as shape of first dimension of `grad`. RuntimeError: If the data type of all of inputs except `indices` conversion of Parameter is not supported. Supported Platforms: ``Ascend`` ``CPU`` Examples: >>> class SparseApplyFtrlNet(nn.Cell): ... def __init__(self): ... super(SparseApplyFtrlNet, self).__init__() ... self.sparse_apply_ftrl = ops.FusedSparseFtrl(lr=0.01, l1=0.0, l2=0.0, lr_power=-0.5) ... self.var = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="var") ... self.accum = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="accum") ... self.linear = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="linear") ... ... def construct(self, grad, indices): ... out = self.sparse_apply_ftrl(self.var, self.accum, self.linear, grad, indices) ... return out ... >>> net = SparseApplyFtrlNet() >>> grad = Tensor(np.array([[[0.1, 0.1]], [[0.1, 0.1]]]).astype(np.float32)) >>> indices = Tensor(np.array([0, 1]).astype(np.int32)) >>> output = net(grad, indices) >>> print(net.var.asnumpy()) [[[-0.00598256 -0.00598256]] [[-0.00598256 -0.00598256]] [[ 1. 1. ]]] """ __mindspore_signature__ = ( sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('accum', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('linear', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('grad', dtype=sig.sig_dtype.T), sig.make_sig('indices', dtype=sig.sig_dtype.T1) ) @prim_attr_register def __init__(self, lr, l1, l2, lr_power, use_locking=False): """Initialize FusedSparseFtrl.""" self.init_prim_io_names(inputs=['var', 'accum', 'linear', 'grad', 'indices'], outputs=['output']) self.add_prim_attr('side_effect_mem', True) validator.check_value_type("lr", lr, [float], self.name) validator.check_value_type("l1", l1, [float], self.name) validator.check_value_type("l2", l2, [float], self.name) validator.check_value_type("lr_power", lr_power, [float], self.name) self.lr = validator.check_positive_float(lr, "lr", self.name) self.l1 = validator.check_non_negative_float(l1, "l1", self.name) self.l2 = validator.check_non_negative_float(l2, "l2", self.name) self.lr_power = validator.check_number("lr_power", lr_power, 0, Rel.LE, self.name) self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name) def infer_shape(self, var_shape, accum_shape, linear_shape, grad_shape, indices_shape): validator.check('var shape', var_shape, 'accum shape', accum_shape, Rel.EQ, self.name) validator.check('var shape', var_shape, 'linear shape', linear_shape, Rel.EQ, self.name) if len(var_shape) > 1: validator.check('var_shape[1:]', var_shape[1:], 'grad_shape[1:]', grad_shape[1:], Rel.EQ, self.name) validator.check_int(len(indices_shape), 1, Rel.EQ, "indices rank", self.name) validator.check('grad_shape[0]', grad_shape[0], 'indices_shape[0]', indices_shape[0], Rel.EQ, self.name) return [1], [1], [1] def infer_dtype(self, var_dtype, accum_dtype, linear_dtype, grad_dtype, indices_dtype): args = {"var_dtype": var_dtype, "accum_dtype": accum_dtype, "linear_dtype": linear_dtype, "grad_dtype": grad_dtype} validator.check_tensors_dtypes_same_and_valid(args, [mstype.float32], self.name) validator.check_tensor_dtype_valid("indices_dtype", indices_dtype, [mstype.int32], self.name) return var_dtype, accum_dtype, linear_dtype
[docs]class FusedSparseProximalAdagrad(PrimitiveWithInfer): r""" Merges the duplicate value of the gradient and then updates relevant entries according to the proximal adagrad algorithm. .. math:: \begin{array}{ll} \\ accum += grad * grad \\ \text{prox_v} = var - lr * grad * \frac{1}{\sqrt{accum}} \\ var = \frac{sign(\text{prox_v})}{1 + lr * l2} * \max(\left| \text{prox_v} \right| - lr * l1, 0) \end{array} All of inputs except `indices` comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type. Args: use_locking (bool): If true, the variable and accumulation tensors will be protected from being updated. Default: False. Inputs: - **var** (Parameter) - Variable tensor to be updated. The data type must be float32. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. - **accum** (Parameter) - Variable tensor to be updated, has the same shape and data type as `var`. - **lr** (Tensor) - The learning rate value. The data type must be float32. The shape is :math:`(1, )`. - **l1** (Tensor) - l1 regularization strength. The data type must be float32. The shape is :math:`(1, )`. - **l2** (Tensor) - l2 regularization strength. The data type must be float32. The shape is :math:`(1, )`. - **grad** (Tensor) - A tensor of the same data type as `var` and grad.shape[1:] = var.shape[1:] if var.shape > 1. - **indices** (Tensor) - A vector of indices into the first dimension of `var` and `accum`. The type must be int32 and indices.shape[0] = grad.shape[0]. Outputs: Tuple of 2 Tensors, this operator will update the input parameters directly, the outputs are useless. - **var** (Tensor) - A Tensor with shape :math:`(1, )`. - **accum** (Tensor) - A Tensor with shape :math:`(1, )`. Raises: TypeError: If `use_locking` is not a bool. TypeError: If dtype of `var`, `accum`, `lr`, `l1`, `l2` or `grad` is not float32. TypeError: If dtype of `indices` is not int32. RuntimeError: If the data type of all inputs except `indices` conversion of Parameter is not supported. Supported Platforms: ``Ascend`` ``CPU`` Examples: >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.sparse_apply_proximal_adagrad = ops.FusedSparseProximalAdagrad() ... self.var = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="var") ... self.accum = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="accum") ... self.lr = Tensor(0.01, mindspore.float32) ... self.l1 = Tensor(0.0, mindspore.float32) ... self.l2 = Tensor(0.0, mindspore.float32) ... def construct(self, grad, indices): ... out = self.sparse_apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, ... self.l2, grad, indices) ... return out ... >>> net = Net() >>> grad = Tensor(np.array([[[0.1, 0.1]], [[0.1, 0.1]]]).astype(np.float32)) >>> indices = Tensor(np.array([0, 1]).astype(np.int32)) >>> output = net(grad, indices) >>> print(net.var.asnumpy()) [[[0.99900496 0.99900496]] [[0.99900496 0.99900496]] [[1. 1. ]]] """ __mindspore_signature__ = ( sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('accum', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('lr', dtype=sig.sig_dtype.T), sig.make_sig('l1', dtype=sig.sig_dtype.T), sig.make_sig('l2', dtype=sig.sig_dtype.T), sig.make_sig('grad', dtype=sig.sig_dtype.T), sig.make_sig('indices', dtype=sig.sig_dtype.T1) ) @prim_attr_register def __init__(self, use_locking=False): """Initialize FusedSparseProximalAdagrad""" self.init_prim_io_names(inputs=['var', 'accum', 'lr', 'l1', 'l2', 'grad', 'indices'], outputs=['output']) self.add_prim_attr('side_effect_mem', True) self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name) def infer_shape(self, var_shape, accum_shape, lr_shape, l1_shape, l2_shape, grad_shape, indices_shape): validator.check_int(len(indices_shape), 1, Rel.EQ, "indices rank", self.name) return [1], [1] def infer_dtype(self, var_dtype, accum_dtype, lr_dtype, l1_dtype, l2_dtype, grad_dtype, indices_dtype): args = {'var': var_dtype, 'accum': accum_dtype, 'grad': grad_dtype} validator.check_tensors_dtypes_same_and_valid(args, [mstype.float32], self.name) validator.check_scalar_or_tensor_types_same({"lr": lr_dtype}, [mstype.float32], self.name) validator.check_scalar_or_tensor_types_same({"l1": l1_dtype}, [mstype.float32], self.name) validator.check_scalar_or_tensor_types_same({"l2": l2_dtype}, [mstype.float32], self.name) valid_dtypes = [mstype.int16, mstype.int32, mstype.int64, mstype.uint16, mstype.uint32, mstype.uint64] validator.check_tensor_dtype_valid('indices', indices_dtype, valid_dtypes, self.name) return var_dtype, accum_dtype
[docs]class KLDivLoss(PrimitiveWithInfer): r""" Computes the Kullback-Leibler divergence between the logits and the labels. The updating formulas of KLDivLoss algorithm are as follows, .. math:: L = \{l_1,\dots,l_N\}^\top, \quad l_n = y_n \cdot (\log y_n - x_n) Then, .. math:: \ell(x, y) = \begin{cases} L, & \text{if reduction} = \text{'none';}\\ \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\ \operatorname{sum}(L), & \text{if reduction} = \text{'sum'.} \end{cases} where :math:`x` represents `logits`. :math:`y` represents `labels`. :math:`\ell(x, y)` represents `output`. Args: reduction (str): Specifies the reduction to be applied to the output. Its value must be one of 'none', 'mean' or 'sum'. Default: 'mean'. Inputs: - **logits** (Tensor) - The input Tensor. The data type must be float32. - **labels** (Tensor) - The label Tensor which has the same shape and data type as `logits`. Outputs: Tensor or Scalar, if `reduction` is 'none', then output is a tensor and has the same shape as `logits`. Otherwise it is a scalar. Raises: TypeError: If `reduction` is not a str. TypeError: If neither `logits` nor `labels` is a Tensor. TypeError: If dtype of `logits` or `labels` is not float32. Supported Platforms: ``GPU`` Examples: >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.kldiv_loss = ops.KLDivLoss() ... def construct(self, logits, labels): ... result = self.kldiv_loss(logits, labels) ... return result ... >>> net = Net() >>> logits = Tensor(np.array([0.2, 0.7, 0.1]), mindspore.float32) >>> labels = Tensor(np.array([0., 1., 0.]), mindspore.float32) >>> output = net(logits, labels) >>> print(output) -0.23333333 """ @prim_attr_register def __init__(self, reduction='mean'): """Initialize KLDivLoss.""" self.reduction = validator.check_string(reduction, ['none', 'mean', 'sum'], 'reduction', self.name) def infer_shape(self, x_shape, y_shape): validator.check('x_shape', x_shape, 'y_shape', y_shape, Rel.EQ, self.name) if self.reduction in ('mean', 'sum'): shape = [] else: shape = x_shape return shape def infer_dtype(self, x_type, y_type): args = {'x': x_type, 'y': y_type} valid_dtypes = (mstype.float16, mstype.float32) validator.check_tensors_dtypes_same_and_valid(args, valid_dtypes, self.name) return x_type
[docs]class BinaryCrossEntropy(PrimitiveWithInfer): r""" Computes the binary cross entropy between the logits and the labels. Sets logits as :math:`x`, labels as :math:`y`, output as :math:`\ell(x, y)`. Let, .. math:: L = \{l_1,\dots,l_N\}^\top, \quad l_n = - w_n \left[ y_n \cdot \log x_n + (1 - y_n) \cdot \log (1 - x_n) \right] In which, :math:`L` indicates the loss of all batch_sizes, :math:`l` indicates the loss of one batch_size, and n indicates one batch_size in the 1-N range. Then, .. math:: \ell(x, y) = \begin{cases} L, & \text{if reduction} = \text{'none';}\\ \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\ \operatorname{sum}(L), & \text{if reduction} = \text{'sum'.} \end{cases} .. warning:: - The value of "x" must range from 0 to 1. - The value of "y" must be "0" or "1". Args: reduction (str): Specifies the reduction to be applied to the output. Its value must be one of 'none', 'mean' or 'sum'. Default: 'mean'. Inputs: - **logits** (Tensor) - The input Tensor. The data type must be float16 or float32, The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. - **labels** (Tensor) - The label Tensor which has the same shape and data type as `logits`. - **weight** (Tensor, optional) - A rescaling weight applied to the loss of each batch element. And it must have the same shape and data type as `logits`. Default: None. Outputs: Tensor or Scalar, if `reduction` is 'none', then output is a tensor and has the same shape as `logits`. Otherwise, the output is a scalar. Raises: TypeError: If dtype of `logits`, `labels` or `weight` (if given) is neither float16 nor float32. ValueError: If `reduction` is not one of 'none', 'mean' or 'sum'. ValueError: If shape of `labels` is not the same as `logits` or `weight` (if given). TypeError: If `logits`, `labels` or `weight` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.binary_cross_entropy = ops.BinaryCrossEntropy() ... def construct(self, logits, labels, weight): ... result = self.binary_cross_entropy(logits, labels, weight) ... return result ... >>> net = Net() >>> logits = Tensor(np.array([0.2, 0.7, 0.1]), mindspore.float32) >>> labels = Tensor(np.array([0., 1., 0.]), mindspore.float32) >>> weight = Tensor(np.array([1, 2, 2]), mindspore.float32) >>> output = net(logits, labels, weight) >>> print(output) 0.38240486 """ @prim_attr_register def __init__(self, reduction='mean'): """Initialize BinaryCrossEntropy.""" self.reduction = validator.check_string(reduction, ['none', 'mean', 'sum'], 'reduction', self.name) def infer_shape(self, x_shape, y_shape, weight_shape): validator.check('x_shape', x_shape, 'y_shape', y_shape, Rel.EQ, self.name) if weight_shape: validator.check('y_shape', y_shape, 'weight_shape', weight_shape, Rel.EQ, self.name) if self.reduction in ('mean', 'sum'): shape = [] else: shape = x_shape return shape def infer_dtype(self, x_type, y_type, weight_type): args = {'x': x_type, 'y': y_type} valid_dtypes = (mstype.float16, mstype.float32) validator.check_tensors_dtypes_same_and_valid(args, valid_dtypes, self.name) if weight_type: validator.check_tensors_dtypes_same_and_valid({'x': x_type, 'weight': weight_type}, valid_dtypes, self.name) return x_type
[docs]class ApplyAdaMax(Primitive): r""" Updates relevant entries according to the adamax scheme. The updating formulas are as follows, .. math:: \begin{array}{ll} \\ m_{t+1} = \beta_1 * m_{t} + (1 - \beta_1) * g \\ v_{t+1} = \max(\beta_2 * v_{t}, \left| g \right|) \\ var = var - \frac{l}{1 - \beta_1^{t+1}} * \frac{m_{t+1}}{v_{t+1} + \epsilon} \end{array} :math:`t` represents updating step while :math:`m` represents the 1st moment vector, :math:`m_{t}` is the last moment of :math:`m_{t+1}`, :math:`v` represents the 2nd moment vector, :math:`v_{t}` is the last moment of :math:`v_{t+1}`, :math:`l` represents scaling factor `lr`, :math:`g` represents `grad`, :math:`\beta_1, \beta_2` represent `beta1` and `beta2`, :math:`\beta_1^{t+1}` represents `beta1_power`, :math:`var` represents the variable to be updated, :math:`\epsilon` represents `epsilon`. Inputs of `var`, `m`, `v` and `grad` comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type. Inputs: - **var** (Parameter) - Variable to be updated. With float32 or float16 data type. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. - **m** (Parameter) - The 1st moment vector in the updating formula, has the same shape and type as `var`. With float32 or float16 data type. - **v** (Parameter) - The 2nd moment vector in the updating formula. Mean square gradients with the same shape and type as `var`. With float32 or float16 data type. - **beta1_power** (Union[Number, Tensor]) - :math:`beta_1^t` in the updating formula, must be a scalar. With float32 or float16 data type. - **lr** (Union[Number, Tensor]) - Learning rate, :math:`l` in the updating formula, must be a scalar. With float32 or float16 data type. - **beta1** (Union[Number, Tensor]) - The exponential decay rate for the 1st moment estimations, must be a scalar. With float32 or float16 data type. - **beta2** (Union[Number, Tensor]) - The exponential decay rate for the 2nd moment estimations, must be a scalar. With float32 or float16 data type. - **epsilon** (Union[Number, Tensor]) - A small value added for numerical stability, must be a scalar. With float32 or float16 data type. - **grad** (Tensor) - A tensor for gradient, has the same shape and type as `var`. With float32 or float16 data type. Outputs: Tuple of 3 Tensor, the updated parameters. - **var** (Tensor) - The same shape and data type as `var`. - **m** (Tensor) - The same shape and data type as `m`. - **v** (Tensor) - The same shape and data type as `v`. Raises: TypeError: If dtype of `var`, `m`, `v`, `beta_power`, `lr`, `beta1`, `beta2`, `epsilon` or `grad` is neither float16 nor float32. TypeError: If `beta_power`, `lr`, `beta1`, `beta2` or `epsilon` is neither a Number nor a Tensor. TypeError: If `grad` is not a Tensor. RuntimeError: If the data type of `var`, `m`, `v` and `grad` conversion of Parameter is not supported. Supported Platforms: ``Ascend`` Examples: >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.apply_ada_max = ops.ApplyAdaMax() ... self.var = Parameter(Tensor(np.array([[0.6, 0.4], ... [0.1, 0.5]]).astype(np.float32)), name="var") ... self.m = Parameter(Tensor(np.array([[0.6, 0.5], ... [0.2, 0.6]]).astype(np.float32)), name="m") ... self.v = Parameter(Tensor(np.array([[0.9, 0.1], ... [0.7, 0.8]]).astype(np.float32)), name="v") ... def construct(self, beta1_power, lr, beta1, beta2, epsilon, grad): ... out = self.apply_ada_max(self.var, self.m, self.v, beta1_power, lr, beta1, beta2, epsilon, grad) ... return out ... >>> net = Net() >>> beta1_power =Tensor(0.9, mindspore.float32) >>> lr = Tensor(0.001, mindspore.float32) >>> beta1 = Tensor(0.9, mindspore.float32) >>> beta2 = Tensor(0.99, mindspore.float32) >>> epsilon = Tensor(1e-10, mindspore.float32) >>> grad = Tensor(np.array([[0.3, 0.7], [0.1, 0.8]]).astype(np.float32)) >>> output = net(beta1_power, lr, beta1, beta2, epsilon, grad) >>> print(output) (Tensor(shape=[2, 2], dtype=Float32, value= [[ 5.93602717e-01, 3.92571449e-01], [ 9.72582996e-02, 4.92249995e-01]]), Tensor(shape=[2, 2], dtype=Float32, value= [[ 5.69999993e-01, 5.19999981e-01], [ 1.89999998e-01, 6.20000005e-01]]), Tensor(shape=[2, 2], dtype=Float32, value= [[ 8.90999973e-01, 6.99999988e-01], [ 6.93000019e-01, 8.00000012e-01]])) """ __mindspore_signature__ = ( sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('m', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('v', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('beta1_power', dtype=sig.sig_dtype.T1), sig.make_sig('lr', dtype=sig.sig_dtype.T2), sig.make_sig('beta1', dtype=sig.sig_dtype.T3), sig.make_sig('beta2', dtype=sig.sig_dtype.T4), sig.make_sig('epsilon', dtype=sig.sig_dtype.T5), sig.make_sig('grad', dtype=sig.sig_dtype.T) ) @prim_attr_register def __init__(self): """Initialize ApplyAdaMax""" self.add_prim_attr('side_effect_mem', True)
[docs]class ApplyAdadelta(Primitive): r""" Updates relevant entries according to the adadelta scheme. .. math:: \begin{array}{ll} \\ accum = \rho * accum + (1 - \rho) * grad^2 \\ \text{update} = \sqrt{\text{accum_update} + \epsilon} * \frac{grad}{\sqrt{accum + \epsilon}} \\ \text{accum_update} = \rho * \text{accum_update} + (1 - \rho) * update^2 \\ var -= lr * update \end{array} where :math:`\rho` represents `rho`, :math:`\epsilon` represents `epsilon`. Inputs of `var`, `accum`, `accum_update` and `grad` comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type. Inputs: - **var** (Parameter) - Weights to be updated. With float32 or float16 data type. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. - **accum** (Parameter) - Accumulation to be updated, has the same shape and data type as `var`. - **accum_update** (Parameter) - Accum_update to be updated, has the same shape and data type as `var`. - **lr** (Union[Number, Tensor]) - Learning rate, must be a scalar. With float32 or float16 data type. - **rho** (Union[Number, Tensor]) - Decay rate, must be a scalar. With float32 or float16 data type. - **epsilon** (Union[Number, Tensor]) - A small value added for numerical stability, must be a scalar. With float32 or float16 data type. - **grad** (Tensor) - Gradients, has the same shape and data type as `var`. Outputs: Tuple of 3 Tensor, the updated parameters. - **var** (Tensor) - The same shape and data type as `var`. - **accum** (Tensor) - The same shape and data type as `accum`. - **accum_update** (Tensor) - The same shape and data type as `accum_update`. Raises: TypeError: If dtype of `var`, `accum`, `accum_update`, `lr`, `rho`, `epsilon` or `grad` is neither float16 nor float32. TypeError: If `accum_update`, `lr`, `rho` or `epsilon` is neither a Number nor a Tensor. RuntimeError: If the data type of `var`, `accum`, `accum_update` and `grad` conversion of Parameter is not supported. Supported Platforms: ``Ascend`` Examples: >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.apply_adadelta = ops.ApplyAdadelta() ... self.var = Parameter(Tensor(np.array([[0.6, 0.4], ... [0.1, 0.5]]).astype(np.float32)), name="var") ... self.accum = Parameter(Tensor(np.array([[0.6, 0.5], ... [0.2, 0.6]]).astype(np.float32)), name="accum") ... self.accum_update = Parameter(Tensor(np.array([[0.9, 0.1], ... [0.7, 0.8]]).astype(np.float32)), ... name="accum_update") ... def construct(self, lr, rho, epsilon, grad): ... out = self.apply_adadelta(self.var, self.accum, self.accum_update, lr, rho, epsilon, grad) ... return out ... >>> net = Net() >>> lr = Tensor(0.001, mindspore.float32) >>> rho = Tensor(0.0, mindspore.float32) >>> epsilon = Tensor(1e-6, mindspore.float32) >>> grad = Tensor(np.array([[0.3, 0.7], [0.1, 0.8]]).astype(np.float32)) >>> output = net(lr, rho, epsilon, grad) >>> print(output) (Tensor(shape=[2, 2], dtype=Float32, value= [[ 5.99051356e-01, 3.99683774e-01], [ 9.91633832e-02, 4.99105573e-01]]), Tensor(shape=[2, 2], dtype=Float32, value= [[ 9.00000036e-02, 4.89999980e-01], [ 1.00000007e-02, 6.40000045e-01]]), Tensor(shape=[2, 2], dtype=Float32, value= [[ 8.99990976e-01, 1.00000791e-01], [ 6.99930906e-01, 7.99999654e-01]])) """ __mindspore_signature__ = ( sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('accum', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('accum_update', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('lr', dtype=sig.sig_dtype.T1), sig.make_sig('rho', dtype=sig.sig_dtype.T2), sig.make_sig('epsilon', dtype=sig.sig_dtype.T3), sig.make_sig('grad', dtype=sig.sig_dtype.T) ) @prim_attr_register def __init__(self): """Initialize ApplyAdadelta""" self.add_prim_attr('side_effect_mem', True)
[docs]class ApplyAdagrad(Primitive): r""" Updates relevant entries according to the adagrad scheme. It has been proposed in Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. This module can adaptively assign different learning rates for each parameter in view of the uneven number of samples for different parameters. .. math:: \begin{array}{ll} \\ accum += grad * grad \\ var -= lr * grad * \frac{1}{\sqrt{accum}} \end{array} Inputs of `var`, `accum` and `grad` comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type. Args: update_slots (bool): If `True`, `accum` will be updated. Default: True. Inputs: - **var** (Parameter) - Variable to be updated. With float32 or float16 data type. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. - **accum** (Parameter) - Accumulation to be updated. The shape and data type must be the same as `var`. - **lr** (Union[Number, Tensor]) - The learning rate value, must be a scalar. With float32 or float16 data type. - **grad** (Tensor) - A tensor for gradient. The shape and data type must be the same as `var`. Outputs: Tuple of 2 Tensors, the updated parameters. - **var** (Tensor) - The same shape and data type as `var`. - **accum** (Tensor) - The same shape and data type as `accum`. Raises: TypeError: If dtype of `var`, `accum`, `lr` or `grad` is neither float16 nor float32. TypeError: If `lr` is neither a Number nor a Tensor. RuntimeError: If the data type of `var`, `accum` and `grad` conversion of Parameter is not supported. Supported Platforms: ``Ascend`` ``CPU`` ``GPU`` Examples: >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.apply_adagrad = ops.ApplyAdagrad() ... self.var = Parameter(Tensor(np.array([[0.6, 0.4], ... [0.1, 0.5]]).astype(np.float32)), name="var") ... self.accum = Parameter(Tensor(np.array([[0.6, 0.5], ... [0.2, 0.6]]).astype(np.float32)), name="accum") ... def construct(self, lr, grad): ... out = self.apply_adagrad(self.var, self.accum, lr, grad) ... return out ... >>> net = Net() >>> lr = Tensor(0.001, mindspore.float32) >>> grad = Tensor(np.array([[0.3, 0.7], [0.1, 0.8]]).astype(np.float32)) >>> output = net(lr, grad) >>> print(output) (Tensor(shape=[2, 2], dtype=Float32, value= [[ 5.99638879e-01, 3.99296492e-01], [ 9.97817814e-02, 4.99281585e-01]]), Tensor(shape=[2, 2], dtype=Float32, value= [[ 6.90000057e-01, 9.90000010e-01], [ 2.10000008e-01, 1.24000001e+00]])) """ __mindspore_signature__ = ( sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('accum', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('lr', dtype=sig.sig_dtype.T1), sig.make_sig('grad', dtype=sig.sig_dtype.T) ) @prim_attr_register def __init__(self, update_slots=True): """Initialize ApplyAdagrad.""" validator.check_value_type("update_slots", update_slots, [bool], self.name) self.add_prim_attr('side_effect_mem', True)
[docs]class ApplyAdagradV2(Primitive): r""" Updates relevant entries according to the adagradv2 scheme. .. math:: \begin{array}{ll} \\ accum += grad * grad \\ var -= lr * grad * \frac{1}{\sqrt{accum} + \epsilon} \end{array} where :math:`\epsilon` represents `epsilon`. Inputs of `var`, `accum` and `grad` comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type. Note: The difference is that `ApplyAdagradV2` has one more small constant value than `ApplyAdagrad`. Args: epsilon (float): A small value added for numerical stability. update_slots (bool): If `True`, `accum` will be updated. Default: True. Inputs: - **var** (Parameter) - Variable to be updated. With float16 or float32 data type. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. - **accum** (Parameter) - Accumulation to be updated. The shape and data type must be the same as `var`. - **lr** (Union[Number, Tensor]) - The learning rate value, must be a float number or a scalar tensor with float16 or float32 data type. - **grad** (Tensor) - A tensor for gradient. The shape and data type must be the same as `var`. Outputs: Tuple of 2 Tensors, the updated parameters. - **var** (Tensor) - The same shape and data type as `var`. - **accum** (Tensor) - The same shape and data type as `accum`. Raises: TypeError: If dtype of `var`, `accum`, `lr` or `grad` is neither float16 nor float32. TypeError: If `lr` is neither a Number nor a Tensor. RuntimeError: If the data type of `var`, `accum` and `grad` conversion of Parameter is not supported. Supported Platforms: ``Ascend`` Examples: >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.apply_adagrad_v2 = ops.ApplyAdagradV2(epsilon=1e-6) ... self.var = Parameter(Tensor(np.array([[0.6, 0.4], ... [0.1, 0.5]]).astype(np.float32)), name="var") ... self.accum = Parameter(Tensor(np.array([[0.6, 0.5], ... [0.2, 0.6]]).astype(np.float32)), name="accum") ... def construct(self, lr, grad): ... out = self.apply_adagrad_v2(self.var, self.accum, lr, grad) ... return out ... >>> net = Net() >>> lr = Tensor(0.001, mindspore.float32) >>> grad = Tensor(np.array([[0.3, 0.7], [0.1, 0.8]]).astype(np.float32)) >>> output = net(lr, grad) >>> print(output) (Tensor(shape=[2, 2], dtype=Float32, value= [[ 5.99638879e-01, 3.99296492e-01], [ 9.97817814e-02, 4.99281585e-01]]), Tensor(shape=[2, 2], dtype=Float32, value= [[ 6.90000057e-01, 9.90000010e-01], [ 2.10000008e-01, 1.24000001e+00]])) """ __mindspore_signature__ = ( sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('accum', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('lr', dtype=sig.sig_dtype.T1), sig.make_sig('grad', dtype=sig.sig_dtype.T) ) @prim_attr_register def __init__(self, epsilon, update_slots=True): """Initialize ApplyAdagradV2.""" validator.check_value_type("epsilon", epsilon, [float], self.name) validator.check_value_type("update_slots", update_slots, [bool], self.name) self.add_prim_attr('side_effect_mem', True)
[docs]class SparseApplyAdagrad(PrimitiveWithInfer): r""" Updates relevant entries according to the adagrad scheme. .. math:: \begin{array}{ll} \\ accum += grad * grad \\ var -= lr * grad * (1 / sqrt(accum)) \end{array} Inputs of `var`, `accum` and `grad` comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type. Args: lr (float): Learning rate. update_slots (bool): If `True`, `accum` will be updated. Default: True. use_locking (bool): If true, the `var` and `accum` tensors will be protected from being updated. Default: False. Inputs: - **var** (Parameter) - Variable to be updated. The data type must be float16 or float32. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. - **accum** (Parameter) - Accumulation to be updated. The shape and data type must be the same as `var`. - **grad** (Tensor) - Gradients has the same data type as `var` and grad.shape[1:] = var.shape[1:] if var.shape > 1. - **indices** (Tensor) - A vector of indices into the first dimension of `var` and `accum`. The type must be int32 and indices.shape[0] = grad.shape[0]. Outputs: Tuple of 2 tensors, the updated parameters. - **var** (Tensor) - The same shape and data type as `var`. - **accum** (Tensor) - The same shape and data type as `accum`. Raises: TypeError: If `lr` is not a float. TypeError: If neither `update_slots` nor `use_locking` is a bool. TypeError: If dtype of `var`, `accum` or `grad` is neither float16 nor float32. TypeError: If dtype of `indices` is not int32. RuntimeError: If the data type of `var`, `accum` and `grad` conversion of Parameter is not supported. Supported Platforms: ``Ascend`` Examples: >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.sparse_apply_adagrad = ops.SparseApplyAdagrad(lr=1e-8) ... self.var = Parameter(Tensor(np.array([[[0.2]]]).astype(np.float32)), name="var") ... self.accum = Parameter(Tensor(np.array([[[0.1]]]).astype(np.float32)), name="accum") ... def construct(self, grad, indices): ... out = self.sparse_apply_adagrad(self.var, self.accum, grad, indices) ... return out ... >>> net = Net() >>> grad = Tensor(np.array([[[0.7]]]).astype(np.float32)) >>> indices = Tensor([0], mindspore.int32) >>> output = net(grad, indices) >>> print(output) (Tensor(shape=[1, 1, 1], dtype=Float32, value= [[[1.99999988e-01]]]), Tensor(shape=[1, 1, 1], dtype=Float32, value= [[[1.00000001e-01]]])) """ __mindspore_signature__ = ( sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('accum', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('grad', dtype=sig.sig_dtype.T), sig.make_sig('indices', dtype=sig.sig_dtype.T1) ) @prim_attr_register def __init__(self, lr, update_slots=True, use_locking=False): """Initialize SparseApplyAdagrad.""" validator.check_is_float(lr, "lr", self.name) validator.check_value_type("update_slots", update_slots, [bool], self.name) validator.check_value_type("use_locking", use_locking, [bool], self.name) self.add_prim_attr('side_effect_mem', True) def infer_shape(self, var_shape, accum_shape, grad_shape, indices_shape): validator.check('var shape', var_shape, 'accum shape', accum_shape, Rel.EQ, self.name) validator.check('len of var shape', len(var_shape), 'len of grad shape', len(grad_shape), Rel.EQ, self.name) if len(var_shape) > 1: validator.check('var_shape[1:]', var_shape[1:], 'grad_shape[1:]', grad_shape[1:], Rel.EQ, self.name) validator.check_int(len(indices_shape), 1, Rel.EQ, "indices rank", self.name) validator.check('grad_shape[0]', grad_shape[0], 'indices_shape[0]', indices_shape[0], Rel.EQ, self.name) return var_shape, accum_shape def infer_dtype(self, var_type, accum_type, grad_type, indices_type): args = {'var': var_type, 'accum': accum_type, 'grad': grad_type} validator.check_tensors_dtypes_same_and_valid(args, [mstype.float16, mstype.float32], self.name) validator.check_tensor_dtype_valid('indices', indices_type, [mstype.int32], self.name) return var_type, accum_type
[docs]class SparseApplyAdagradV2(PrimitiveWithInfer): r""" Updates relevant entries according to the adagrad scheme, one more epsilon attribute than SparseApplyAdagrad. .. math:: \begin{array}{ll} \\ accum += grad * grad \\ var -= lr * grad * \frac{1}{\sqrt{accum} + \epsilon} \end{array} where :math:`\epsilon` represents `epsilon`. Inputs of `var`, `accum` and `grad` comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type. Args: lr (float): Learning rate. epsilon (float): A small value added for numerical stability. use_locking (bool): If `True`, the `var` and `accum` tensors will be protected from being updated. Default: False. update_slots (bool): If `True`, the computation logic will be different to `False`. Default: True. Inputs: - **var** (Parameter) - Variable to be updated. The data type must be float16 or float32. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. - **accum** (Parameter) - Accumulation to be updated. The shape and data type must be the same as `var`. - **grad** (Tensor) - Gradients has the same data type as `var` and grad.shape[1:] = var.shape[1:] if var.shape > 1. - **indices** (Tensor) - A vector of indices into the first dimension of `var` and `accum`. The type must be int32 and indices.shape[0] = grad.shape[0]. Outputs: Tuple of 2 tensors, the updated parameters. - **var** (Tensor) - The same shape and data type as `var`. - **accum** (Tensor) - The same shape and data type as `accum`. Raises: TypeError: If neither `lr` nor `epsilon` is a float. TypeError: If neither `update_slots` nor `use_locking` is a bool. TypeError: If dtype of `var`, `accum` or `grad` is neither float16 nor float32. TypeError: If dtype of `indices` is not int32. RuntimeError: If the data type of `var`, `accum` and `grad` conversion of Parameter is not supported. Supported Platforms: ``Ascend`` Examples: >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.sparse_apply_adagrad_v2 = ops.SparseApplyAdagradV2(lr=1e-8, epsilon=1e-6) ... self.var = Parameter(Tensor(np.array([[0.2]]).astype(np.float32)), name="var") ... self.accum = Parameter(Tensor(np.array([[0.1]]).astype(np.float32)), name="accum") ... ... def construct(self, grad, indices): ... out = self.sparse_apply_adagrad_v2(self.var, self.accum, grad, indices) ... return out ... >>> net = Net() >>> grad = Tensor(np.array([[0.7]]).astype(np.float32)) >>> indices = Tensor(np.ones([1]), mindspore.int32) >>> output = net(grad, indices) >>> print(output) (Tensor(shape=[1, 1], dtype=Float32, value= [[ 2.00000003e-01]]), Tensor(shape=[1, 1], dtype=Float32, value= [[ 1.00000001e-01]])) """ __mindspore_signature__ = ( sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('accum', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('grad', dtype=sig.sig_dtype.T), sig.make_sig('indices', dtype=sig.sig_dtype.T1) ) @prim_attr_register def __init__(self, lr, epsilon, use_locking=False, update_slots=True): """Initialize SparseApplyAdagradV2.""" self.lr = validator.check_value_type("lr", lr, [float], self.name) self.epsilon = validator.check_value_type("epsilon", epsilon, [float], self.name) self.use_locking = validator.check_value_type("update_slots", update_slots, [bool], self.name) self.update_slots = validator.check_value_type("use_locking", use_locking, [bool], self.name) self.add_prim_attr('side_effect_mem', True) def infer_shape(self, var_shape, accum_shape, grad_shape, indices_shape): validator.check('var shape', var_shape, 'accum shape', accum_shape, Rel.EQ, self.name) validator.check('len of var shape', len(var_shape), 'len of grad shape', len(grad_shape), Rel.EQ, self.name) if len(var_shape) > 1: validator.check('var_shape[1:]', var_shape[1:], 'grad_shape[1:]', grad_shape[1:], Rel.EQ, self.name) validator.check_int(len(indices_shape), 1, Rel.EQ, "indices rank", self.name) validator.check('grad_shape[0]', grad_shape[0], 'indices_shape[0]', indices_shape[0], Rel.EQ, self.name) return var_shape, accum_shape def infer_dtype(self, var_type, accum_type, grad_type, indices_type): args = {'var': var_type, 'accum': accum_type, 'grad': grad_type} validator.check_tensors_dtypes_same_and_valid(args, [mstype.float16, mstype.float32], self.name) validator.check_tensor_dtype_valid('indices', indices_type, [mstype.int32], self.name) return var_type, accum_type
[docs]class ApplyProximalAdagrad(Primitive): r""" Updates relevant entries according to the proximal adagrad algorithm. .. math:: \begin{array}{ll} \\ accum += grad * grad \\ \text{prox_v} = var - lr * grad * \frac{1}{\sqrt{accum}} \\ var = \frac{sign(\text{prox_v})}{1 + lr * l2} * \max(\left| \text{prox_v} \right| - lr * l1, 0) \end{array} Inputs of `var`, `accum` and `grad` comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type. Args: use_locking (bool): If true, the var and accumulation tensors will be protected from being updated. Default: False. Inputs: - **var** (Parameter) - Variable to be updated. The data type must be float16 or float32. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. - **accum** (Parameter) - Accumulation to be updated, must have the same shape and dtype as `var`. - **lr** (Union[Number, Tensor]) - The learning rate value, must be a scalar. The data type must be float16 or float32. - **l1** (Union[Number, Tensor]) - l1 regularization strength, must be a scalar. The data type must be float16 or float32. - **l2** (Union[Number, Tensor]) - l2 regularization strength, must be a scalar. The data type must be float16 or float32. - **grad** (Tensor) - Gradient with the same shape and dtype as `var`. Outputs: Tuple of 2 Tensors, the updated parameters. - **var** (Tensor) - The same shape and data type as `var`. - **accum** (Tensor) - The same shape and data type as `accum`. Raises: TypeError: If `use_blocking` is not a bool. TypeError: If dtype of `var`, `lr`, `l1` or `l2` is neither float16 nor float32. TypeError: If `lr`, `l1` or `l2` is neither a Number nor a Tensor. TypeError: If `grad` is not a Tensor. RuntimeError: If the data type of `var`, `accum` and `grad` conversion of Parameter is not supported. Supported Platforms: ``Ascend`` Examples: >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.apply_proximal_adagrad = ops.ApplyProximalAdagrad() ... self.var = Parameter(Tensor(np.array([[0.6, 0.4], ... [0.1, 0.5]]).astype(np.float32)), name="var") ... self.accum = Parameter(Tensor(np.array([[0.6, 0.5], ... [0.2, 0.6]]).astype(np.float32)), name="accum") ... self.lr = 0.01 ... self.l1 = 0.0 ... self.l2 = 0.0 ... def construct(self, grad): ... out = self.apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, self.l2, grad) ... return out ... >>> net = Net() >>> grad = Tensor(np.array([[0.3, 0.7], [0.1, 0.8]]).astype(np.float32)) >>> output = net(grad) >>> print(output) (Tensor(shape=[2, 2], dtype=Float32, value= [[ 5.96388459e-01, 3.92964751e-01], [ 9.78178233e-02, 4.92815793e-01]]), Tensor(shape=[2, 2], dtype=Float32, value= [[ 6.90000057e-01, 9.90000010e-01], [ 2.10000008e-01, 1.24000001e+00]])) """ __mindspore_signature__ = ( sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('accum', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('lr', dtype=sig.sig_dtype.T1), sig.make_sig('l1', dtype=sig.sig_dtype.T2), sig.make_sig('l2', dtype=sig.sig_dtype.T3), sig.make_sig('grad', dtype=sig.sig_dtype.T) ) @prim_attr_register def __init__(self, use_locking=False): """Initialize ApplyProximalAdagrad.""" self.init_prim_io_names(inputs=['var', 'accum', 'lr', 'l1', 'l2', 'grad'], outputs=['var', 'accum']) self.add_prim_attr('side_effect_mem', True) self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name)
[docs]class SparseApplyProximalAdagrad(PrimitiveWithCheck): r""" Updates relevant entries according to the proximal adagrad algorithm. Compared with ApplyProximalAdagrad, an additional index tensor is input. .. math:: \begin{array}{ll} \\ accum += grad * grad \\ \text{prox_v} = var - lr * grad * \frac{1}{\sqrt{accum}} \\ var = \frac{sign(\text{prox_v})}{1 + lr * l2} * \max(\left| \text{prox_v} \right| - lr * l1, 0) \end{array} Inputs of `var`, `accum` and `grad` comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type. Args: use_locking (bool): If true, the `var` and `accum` tensors will be protected from being updated. Default: False. Inputs: - **var** (Parameter) - Variable tensor to be updated. The data type must be float16 or float32. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. - **accum** (Parameter) - Variable tensor to be updated, has the same shape and dtype as `var`. - **lr** (Union[Number, Tensor]) - The learning rate value, must be a float number or a scalar tensor with float16 or float32 data type. - **l1** (Union[Number, Tensor]) - l1 regularization strength, must be a float number or a scalar tensor with float16 or float32 data type. - **l2** (Union[Number, Tensor]) - l2 regularization strength, must be a float number or a scalar tensor with float16 or float32 data type. - **grad** (Tensor) - A tensor of the same type as `var` and grad.shape[1:] = var.shape[1:] if var.shape > 1. - **indices** (Tensor) - A tensor of indices in the first dimension of `var` and `accum`. If there are duplicates in `indices`, the behavior is undefined. Must be one of the following types: int32, int64 and indices.shape[0] = grad.shape[0]. Outputs: Tuple of 2 tensors, the updated parameters. - **var** (Tensor) - The same shape and data type as `var`. - **accum** (Tensor) - The same shape and data type as `accum`. Raises: TypeError: If `use_locking` is not a bool. TypeError: If dtype of `var`, `accum`, `lr`, `l1`, `l2` or `grad` is neither float16 nor float32. TypeError: If dtype of `indices` is neither int32 nor int64. RuntimeError: If the data type of `var`, `accum` and `grad` conversion of Parameter is not supported. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.sparse_apply_proximal_adagrad = ops.SparseApplyProximalAdagrad() ... self.var = Parameter(Tensor(np.array([[4.1, 7.2], [1.1, 3.0]], np.float32)), name="var") ... self.accum = Parameter(Tensor(np.array([[0, 0], [0, 0]], np.float32)), name="accum") ... self.lr = 1.0 ... self.l1 = 1.0 ... self.l2 = 0.0 ... def construct(self, grad, indices): ... out = self.sparse_apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, ... self.l2, grad, indices) ... return out ... >>> net = Net() >>> grad = Tensor(np.array([[1, 1], [1, 1]], np.float32)) >>> indices = Tensor(np.array([0, 1], np.int32)) >>> output = net(grad, indices) >>> print(output) (Tensor(shape=[2, 2], dtype=Float32, value= [[ 2.09999990e+00, 5.19999981e+00], [ 0.00000000e+00, 1.00000000e+00]]), Tensor(shape=[2, 2], dtype=Float32, value= [[ 1.00000000e+00, 1.00000000e+00], [ 1.00000000e+00, 1.00000000e+00]])) """ __mindspore_signature__ = ( sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('accum', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('lr', dtype=sig.sig_dtype.T1), sig.make_sig('l1', dtype=sig.sig_dtype.T2), sig.make_sig('l2', dtype=sig.sig_dtype.T3), sig.make_sig('grad', dtype=sig.sig_dtype.T), sig.make_sig('indices', dtype=sig.sig_dtype.T4) ) @prim_attr_register def __init__(self, use_locking=False): """Initialize SparseApplyProximalAdagrad.""" self.init_prim_io_names(inputs=['var', 'accum', 'lr', 'l1', 'l2', 'grad', 'indices'], outputs=['var', 'accum']) self.add_prim_attr('side_effect_mem', True) self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name) def check_shape(self, var_shape, accum_shape, lr_shape, l1_shape, l2_shape, grad_shape, indices_shape): validator.check_int(len(indices_shape), 1, Rel.EQ, "indices rank", self.name) def check_dtype(self, var_dtype, accum_dtype, lr_dtype, l1_dtype, l2_dtype, grad_dtype, indices_dtype): args = {'var': var_dtype, 'accum': accum_dtype, 'grad': grad_dtype} validator.check_tensors_dtypes_same_and_valid(args, [mstype.float16, mstype.float32], self.name) validator.check_scalar_or_tensor_types_same({"lr": lr_dtype}, [mstype.float16, mstype.float32], self.name) validator.check_scalar_or_tensor_types_same({"l1": l1_dtype}, [mstype.float16, mstype.float32], self.name) validator.check_scalar_or_tensor_types_same({"l2": l2_dtype}, [mstype.float16, mstype.float32], self.name) valid_dtypes = [mstype.int32, mstype.int64] validator.check_tensor_dtype_valid('indices', indices_dtype, valid_dtypes, self.name)
[docs]class ApplyAddSign(Primitive): r""" Updates relevant entries according to the AddSign algorithm. .. math:: \begin{array}{ll} \\ m_{t+1} = \beta * m_{t} + (1 - \beta) * g \\ \text{update} = (\alpha + \text{sign_decay} * sign(g) * sign(m)) * g \\ var = var - lr_{t+1} * \text{update} \end{array} :math:`t` represents updating step while :math:`m` represents the 1st moment vector, :math:`m_{t}` is the last moment of :math:`m_{t+1}`, :math:`lr` represents scaling factor `lr`, :math:`g` represents `grad`, :math:`\alpha` represents `alpha`, :math:`\beta` represents `beta`. Inputs of `var`, `accum` and `grad` comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type. Inputs: - **var** (Parameter) - Variable tensor to be updated. With float32 or float16 data type. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. - **m** (Parameter) - Variable tensor to be updated, has the same shape and data type as `var`. - **lr** (Union[Number, Tensor]) - The learning rate value, must be a scalar. With float32 or float16 data type. - **alpha** (Union[Number, Tensor]) - Must be a scalar. With float32 or float16 data type. - **sign_decay** (Union[Number, Tensor]) - Must be a scalar. With float32 or float16 data type. - **beta** (Union[Number, Tensor]) - The exponential decay rate, must be a scalar. With float32 or float16 data type. - **grad** (Tensor) - A tensor of the same shape and data type as `var`, for the gradient. Outputs: Tuple of 2 Tensors, the updated parameters. - **var** (Tensor) - The same shape and data type as `var`. - **m** (Tensor) - The same shape and data type as `m`. Raises: TypeError: If dtype of `var`, `lr`, `alpha`, `sign_decay` or `beta` is neither float16 nor float32. TypeError: If `lr`, `alpha` or `sign_decay` is neither a Number nor a Tensor. TypeError: If `grad` is not a Tensor. RuntimeError: If the data type of `var`, `accum` and `grad` conversion of Parameter is not supported. Supported Platforms: ``Ascend`` Examples: >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.apply_add_sign = ops.ApplyAddSign() ... self.var = Parameter(Tensor(np.array([[0.6, 0.4], ... [0.1, 0.5]]).astype(np.float32)), name="var") ... self.m = Parameter(Tensor(np.array([[0.6, 0.5], ... [0.2, 0.6]]).astype(np.float32)), name="m") ... self.lr = 0.001 ... self.alpha = 1.0 ... self.sign_decay = 0.99 ... self.beta = 0.9 ... def construct(self, grad): ... out = self.apply_add_sign(self.var, self.m, self.lr, self.alpha, self.sign_decay, self.beta, grad) ... return out ... >>> net = Net() >>> grad = Tensor(np.array([[0.3, 0.7], [0.1, 0.8]]).astype(np.float32)) >>> output = net(grad) >>> print(output) (Tensor(shape=[2, 2], dtype=Float32, value= [[ 5.99403024e-01, 3.98607016e-01], [ 9.98010039e-02, 4.98407990e-01]]), Tensor(shape=[2, 2], dtype=Float32, value= [[ 5.70000052e-01, 5.19999981e-01], [ 1.89999998e-01, 6.20000064e-01]])) """ __mindspore_signature__ = ( sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('m', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('lr', dtype=sig.sig_dtype.T1), sig.make_sig('alpha', dtype=sig.sig_dtype.T2), sig.make_sig('sign_decay', dtype=sig.sig_dtype.T3), sig.make_sig('beta', dtype=sig.sig_dtype.T3), sig.make_sig('grad', dtype=sig.sig_dtype.T) ) @prim_attr_register def __init__(self): """Initialize ApplyAddSign.""" self.add_prim_attr('side_effect_mem', True)
[docs]class ApplyPowerSign(Primitive): r""" Updates relevant entries according to the AddSign algorithm. .. math:: \begin{array}{ll} \\ m_{t+1} = \beta * m_{t} + (1 - \beta) * g \\ \text{update} = \exp(\text{logbase} * \text{sign_decay} * sign(g) * sign(m)) * g \\ var = var - lr_{t+1} * \text{update} \end{array} :math:`t` represents updating step while :math:`m` represents the 1st moment vector, :math:`m_{t}` is the last moment of :math:`m_{t+1}`, :math:`lr` represents scaling factor `lr`, :math:`g` represents `grad`, :math:`\beta` represents `beta`. All of inputs comply with the implicit type conversion rules to make the data types consistent. If `lr`, `logbase`, `sign_decay` or `beta` is a number, the number is automatically converted to Tensor, and the data type is consistent with the Tensor data type involved in the operation. If inputs are tensors and have different data types, the lower priority data type will be converted to the relatively highest priority data type. Inputs: - **var** (Parameter) - Variable tensor to be updated. With float32 or float16 data type. If data type of `var` is float16, all inputs must have the same data type as `var`. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. - **m** (Parameter) - Variable tensor to be updated, has the same shape and data type as `var`. - **lr** (Union[Number, Tensor]) - The learning rate value, should be a scalar or Tensor with float32 or float16 data type. - **logbase** (Union[Number, Tensor]) - Should be a scalar or Tensor with float32 or float16 data type. - **sign_decay** (Union[Number, Tensor]) - Should be a scalar or Tensor with float32 or float16 data type. - **beta** (Union[Number, Tensor]) - The exponential decay rate, should be a scalar or Tensor with float32 or float16 data type. - **grad** (Tensor) - A tensor of the same shape and data type as `var`, for the gradient. Outputs: Tuple of 2 Tensors, the updated parameters. - **var** (Tensor) - The same shape and data type as `var`. - **m** (Tensor) - The same shape and data type as `m`. Raises: TypeError: If dtype of `var`, `lr`, `logbase`, `sign_decay`, `beta` or `grad` is neither float16 nor float32. TypeError: If `lr`, `logbase`, `sign_decay` or `beta` is neither a Number nor a Tensor. TypeError: If `grad` is not a Tensor. RuntimeError: If the data type of `lr`, `logbase`, `sign_decay` and `grad` conversion of Parameter is not supported. Supported Platforms: ``Ascend`` Examples: >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.apply_power_sign = ops.ApplyPowerSign() ... self.var = Parameter(Tensor(np.array([[0.6, 0.4], ... [0.1, 0.5]]).astype(np.float32)), name="var") ... self.m = Parameter(Tensor(np.array([[0.6, 0.5], ... [0.2, 0.6]]).astype(np.float32)), name="m") ... self.lr = 0.001 ... self.logbase = np.e ... self.sign_decay = 0.99 ... self.beta = 0.9 ... def construct(self, grad): ... out = self.apply_power_sign(self.var, self.m, self.lr, self.logbase, ... self.sign_decay, self.beta, grad) ... return out ... >>> net = Net() >>> grad = Tensor(np.array([[0.3, 0.7], [0.1, 0.8]]).astype(np.float32)) >>> output = net(grad) >>> print(output) (Tensor(shape=[2, 2], dtype=Float32, value= [[ 5.95575690e-01, 3.89676481e-01], [ 9.85252112e-02, 4.88201708e-01]]), Tensor(shape=[2, 2], dtype=Float32, value= [[ 5.70000052e-01, 5.19999981e-01], [ 1.89999998e-01, 6.20000064e-01]])) """ __mindspore_signature__ = ( sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('m', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('lr', dtype=sig.sig_dtype.T), sig.make_sig('logbase', dtype=sig.sig_dtype.T), sig.make_sig('sign_decay', dtype=sig.sig_dtype.T), sig.make_sig('beta', dtype=sig.sig_dtype.T), sig.make_sig('grad', dtype=sig.sig_dtype.T) ) @prim_attr_register def __init__(self): """Initialize ApplyPowerSign.""" self.add_prim_attr('side_effect_mem', True)
[docs]class ApplyGradientDescent(Primitive): r""" Updates `var` by subtracting `alpha` * `delta` from it. .. math:: var = var - \alpha * \delta where :math:`\alpha` represents `alpha`, :math:`\delta` represents `delta`. Inputs of `var` and `delta` comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type. Inputs: - **var** (Parameter) - Variable tensor to be updated. With float32 or float16 data type. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. - **alpha** (Union[Number, Tensor]) - Scaling factor, must be a scalar. With float32 or float16 data type. - **delta** (Tensor) - A tensor for the change, has the same shape and data type as `var`. Outputs: Tensor, represents the updated `var`. Raises: TypeError: If dtype of `var` or `alpha` is neither float16 nor float32. TypeError: If `delta` is not a Tensor. TypeError: If `alpha` is neither a Number nor a Tensor. RuntimeError: If the data type of `var` and `delta` conversion of Parameter is not supported. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.apply_gradient_descent = ops.ApplyGradientDescent() ... self.var = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="var") ... self.alpha = 0.001 ... def construct(self, delta): ... out = self.apply_gradient_descent(self.var, self.alpha, delta) ... return out ... >>> net = Net() >>> delta = Tensor(np.array([[0.1, 0.1], [0.1, 0.1]]).astype(np.float32)) >>> output = net(delta) >>> print(output) [[0.9999 0.9999] [0.9999 0.9999]] """ __mindspore_signature__ = ( sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('alpha', dtype=sig.sig_dtype.T1), sig.make_sig('delta', dtype=sig.sig_dtype.T) ) @prim_attr_register def __init__(self): """Initialize ApplyGradientDescent.""" self.add_prim_attr('side_effect_mem', True)
[docs]class ApplyProximalGradientDescent(PrimitiveWithInfer): r""" Updates relevant entries according to the FOBOS(Forward Backward Splitting) algorithm. .. math:: \begin{array}{ll} \\ \text{prox_v} = var - \alpha * \delta \\ var = \frac{sign(\text{prox_v})}{1 + \alpha * l2} * \max(\left| \text{prox_v} \right| - \alpha * l1, 0) \end{array} where :math:`\alpha` represents `alpha`, :math:`\delta` represents `delta`. Inputs of `var` and `delta` comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type. Inputs: - **var** (Parameter) - Variable tensor to be updated. With float32 or float16 data type. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. - **alpha** (Union[Number, Tensor]) - Scaling factor, must be a scalar. With float32 or float16 data type. - **l1** (Union[Number, Tensor]) - l1 regularization strength, must be a scalar. With float32 or float16 data type. - **l2** (Union[Number, Tensor]) - l2 regularization strength, must be a scalar. With float32 or float16 data type. - **delta** (Tensor) - A tensor for the change, has the same shape and data type as `var`. Outputs: Tensor, represents the updated `var`. Raises: TypeError: If dtype of `var`, `alpha`, `l1` or `l2` is neither float16 nor float32. TypeError: If `alpha`, `l1` or `l2` is neither a Number nor a Tensor. TypeError: If `delta` is not a Tensor. RuntimeError: If the data type of `var`, and `delta` conversion of Parameter is not supported. Supported Platforms: ``Ascend`` Examples: >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.apply_proximal_gradient_descent = ops.ApplyProximalGradientDescent() ... self.var = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="var") ... self.alpha = 0.001 ... self.l1 = 0.1 ... self.l2 = 0.1 ... def construct(self, delta): ... out = self.apply_proximal_gradient_descent(self.var, self.alpha, self.l1, self.l2, delta) ... return out ... >>> net = Net() >>> delta = Tensor(np.array([[0.1, 0.1], [0.1, 0.1]]).astype(np.float32)) >>> output = net(delta) >>> print(output) [[0.99969995 0.99969995] [0.99969995 0.99969995]] """ __mindspore_signature__ = ( sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('alpha', dtype=sig.sig_dtype.T1), sig.make_sig('l1', dtype=sig.sig_dtype.T2), sig.make_sig('l2', dtype=sig.sig_dtype.T3), sig.make_sig('delta', dtype=sig.sig_dtype.T) ) @prim_attr_register def __init__(self): """Initialize ApplyGradientDescent.""" self.add_prim_attr('side_effect_mem', True) def infer_shape(self, var_shape, alpha_shape, l1_shape, l2_shape, delta_shape): validator.check('delta shape', delta_shape, 'var shape', var_shape, Rel.EQ, self.name) alpha_shape_len = len(alpha_shape) validator.check_int(alpha_shape_len, 1, Rel.LE, "alpha's rank", self.name) if alpha_shape_len == 1: validator.check_int(alpha_shape[0], 1, Rel.EQ, "alpha_shape[0]", self.name) l1_shape_len = len(l1_shape) validator.check_int(l1_shape_len, 1, Rel.LE, "l1's rank", self.name) if l1_shape_len == 1: validator.check_int(l1_shape[0], 1, Rel.EQ, "l1_shape[0]", self.name) l2_shape_len = len(l2_shape) validator.check_int(l2_shape_len, 1, Rel.LE, "l2's rank", self.name) if l2_shape_len == 1: validator.check_int(l2_shape[0], 1, Rel.EQ, "l2_shape[0]", self.name) return var_shape def infer_dtype(self, var_dtype, alpha_dtype, l1_dtype, l2_dtype, delta_dtype): valid_dtypes = [mstype.float16, mstype.float32] args = {'var': var_dtype, 'delta': delta_dtype} validator.check_tensors_dtypes_same_and_valid(args, valid_dtypes, self.name) validator.check_scalar_or_tensor_types_same({"alpha": alpha_dtype}, valid_dtypes, self.name) validator.check_scalar_or_tensor_types_same({"l1": l1_dtype}, valid_dtypes, self.name) validator.check_scalar_or_tensor_types_same({"l2": l2_dtype}, valid_dtypes, self.name) return var_dtype
[docs]class LARSUpdate(PrimitiveWithInfer): """ Conducts LARS (layer-wise adaptive rate scaling) update on the sum of squares of gradient. For more details, please refer to :class:`mindspore.nn.LARS`. Args: epsilon (float): Term added to the denominator to improve numerical stability. Default: 1e-05. hyperpara (float): Trust coefficient for calculating the local learning rate. Default: 0.001. use_clip (bool): Whether to use clip operation for calculating the local learning rate. Default: False. Inputs: - **weight** (Tensor) - A tensor, representing the weight. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. - **gradient** (Tensor) - The gradient of weight, which has the same shape and dtype with weight. - **norm_weight** (Tensor) - A scalar tensor, representing the sum of squares of weight. - **norm_gradient** (Tensor) - A scalar tensor, representing the sum of squares of gradient. - **weight_decay** (Union[Number, Tensor]) - Weight decay. It must be a scalar tensor or number. - **learning_rate** (Union[Number, Tensor]) - Learning rate. It must be a scalar tensor or number. Outputs: Tensor, represents the new gradient. Raises: TypeError: If neither `epsilon` nor `hyperpara` is a float. TypeError: If `use_clip` is a bool. TypeError: If `weight`, `gradient`, `norm_weight` or `norm_gradient` is not a Tensor. TypeError: If `weight_decay` or `learning_rate` is neither a Number nor a Tensor. TypeError: If shape of `gradient` is not the same as `weight`. Supported Platforms: ``Ascend`` Examples: >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.lars = ops.LARSUpdate() ... self.reduce = ops.ReduceSum() ... self.square = ops.Square() ... def construct(self, weight, gradient): ... w_square_sum = self.reduce(self.square(weight)) ... grad_square_sum = self.reduce(self.square(gradient)) ... grad_t = self.lars(weight, gradient, w_square_sum, grad_square_sum, 0.0, 1.0) ... return grad_t ... >>> weight = Tensor(np.array([[0.5, 0.8, 0.2], [0.6, 0.4, 0.2]]).astype(np.float32)) >>> gradient = Tensor(np.array([[0.4, 0.4, 0.5], [0.2, 0.4, 0.3]]).astype(np.float32)) >>> net = Net() >>> output = net(Tensor(weight), Tensor(gradient)) >>> print(output) [[0.0005265 0.0005265 0.00065813] [0.00026325 0.0005265 0.00039488]] """ @prim_attr_register def __init__(self, epsilon=1e-05, hyperpara=0.001, use_clip=False): """Initialize LARSUpdate.""" validator.check_value_type("epsilon", epsilon, [float], self.name) validator.check_value_type("hyperpara", hyperpara, [float], self.name) validator.check_value_type("use_clip", use_clip, [bool], self.name)
[docs]class ApplyFtrl(Primitive): """ Updates relevant entries according to the FTRL scheme. For more details, please refer to :class:`mindspore.nn.FTRL`. Args: use_locking (bool): Use locks for updating operation if true . Default: False. Inputs: - **var** (Parameter) - The variable to be updated. The data type must be float16 or float32. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. - **accum** (Parameter) - The accumulation to be updated, must be same shape and data type as `var`. - **linear** (Parameter) - The linear coefficient to be updated, must be same shape and data type as `var`. - **grad** (Tensor) - Gradient. The data type must be float16 or float32. - **lr** (Union[Number, Tensor]) - The learning rate value, must be positive. Default: 0.001. It must be a float number or a scalar tensor with float16 or float32 data type. - **l1** (Union[Number, Tensor]) - l1 regularization strength, must be greater than or equal to zero. Default: 0.0. It must be a float number or a scalar tensor with float16 or float32 data type. - **l2** (Union[Number, Tensor]) - l2 regularization strength, must be greater than or equal to zero. Default: 0.0. It must be a float number or a scalar tensor with float16 or float32 data type. - **lr_power** (Union[Number, Tensor]) - Learning rate power controls how the learning rate decreases during training, must be less than or equal to zero. Use fixed learning rate if lr_power is zero. Default: -0.5. It must be a float number or a scalar tensor with float16 or float32 data type. Outputs: - **var** (Tensor) - Represents the updated `var`. As the input parameters has been updated in-place, this value is always zero when the platform is GPU. Raises: TypeError: If `use_locking` is not a bool. TypeError: If dtype of `var`, `grad`, `lr`, `l1`, `l2` or `lr_power` is neither float16 nor float32. TypeError: If `lr`, `l1`, `l2` or `lr_power` is neither a Number nor a Tensor. TypeError: If `grad` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> class ApplyFtrlNet(nn.Cell): ... def __init__(self): ... super(ApplyFtrlNet, self).__init__() ... self.apply_ftrl = ops.ApplyFtrl() ... self.lr = 0.001 ... self.l1 = 0.0 ... self.l2 = 0.0 ... self.lr_power = -0.5 ... self.var = Parameter(Tensor(np.array([[0.6, 0.4], ... [0.1, 0.5]]).astype(np.float32)), name="var") ... self.accum = Parameter(Tensor(np.array([[0.6, 0.5], ... [0.2, 0.6]]).astype(np.float32)), name="accum") ... self.linear = Parameter(Tensor(np.array([[0.9, 0.1], ... [0.7, 0.8]]).astype(np.float32)), name="linear") ... ... def construct(self, grad): ... out = self.apply_ftrl(self.var, self.accum, self.linear, grad, self.lr, self.l1, self.l2, ... self.lr_power) ... return out ... >>> net = ApplyFtrlNet() >>> input_x = Tensor(np.array([[0.3, 0.7], [0.1, 0.8]]).astype(np.float32)) >>> output = net(input_x) >>> print(net.var.asnumpy()) [[ 0.0390525 0.11492836] [ 0.00066425 0.15075898]] """ @prim_attr_register def __init__(self, use_locking=False): """Initialize ApplyFtrl.""" self.init_prim_io_names(inputs=['var', 'accum', 'linear', 'grad', 'lr', 'l1', 'l2', 'lr_power'], outputs=['output']) self.add_prim_attr('side_effect_mem', True) self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name)
[docs]class SparseApplyFtrl(PrimitiveWithCheck): """ Updates relevant entries according to the FTRL-proximal scheme. For more details, please refer to :class:`mindspore.nn.FTRL`. All of inputs except `indices` comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type. Args: lr (float): The learning rate value, must be positive. l1 (float): l1 regularization strength, must be greater than or equal to zero. l2 (float): l2 regularization strength, must be greater than or equal to zero. lr_power (float): Learning rate power controls how the learning rate decreases during training, must be less than or equal to zero. Use fixed learning rate if `lr_power` is zero. use_locking (bool): Use locks for updating operation if true . Default: False. Inputs: - **var** (Parameter) - The variable to be updated. The data type must be float16 or float32. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. - **accum** (Parameter) - The accumulation to be updated, must be same data type and shape as `var`. - **linear** (Parameter) - The linear coefficient to be updated, must be the same data type and shape as `var`. - **grad** (Tensor) - A tensor of the same type as `var` and grad.shape[1:] = var.shape[1:] if var.shape > 1. - **indices** (Tensor) - A tensor of indices in the first dimension of `var` and `accum`. If there are duplicates in `indices`, the behavior is undefined. The type must be int32 or int64 and indices.shape[0] = grad.shape[0]. Outputs: - **var** (Tensor) - Tensor, has the same shape and data type as `var`. - **accum** (Tensor) - Tensor, has the same shape and data type as `accum`. - **linear** (Tensor) - Tensor, has the same shape and data type as `linear`. Raises: TypeError: If `lr`, `l1`, `l2` or `lr_power` is not a float. TypeError: If `use_locking` is not a bool. TypeError: If dtype of `var`, `accum`, `linear` or `grad` is neither float16 nor float32. TypeError: If dtype of `indices` is neither int32 nor int64. RuntimeError: If the data type of all of inputs except `indices` conversion of Parameter is not supported. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> class SparseApplyFtrlNet(nn.Cell): ... def __init__(self): ... super(SparseApplyFtrlNet, self).__init__() ... self.sparse_apply_ftrl = ops.SparseApplyFtrl(lr=0.01, l1=0.0, l2=0.0, lr_power=-0.5) ... self.var = Parameter(Tensor(np.array([[0.2]]).astype(np.float32)), name="var") ... self.accum = Parameter(Tensor(np.array([[0.1]]).astype(np.float32)), name="accum") ... self.linear = Parameter(Tensor(np.array([[0.6]]).astype(np.float32)), name="linear") ... ... def construct(self, grad, indices): ... out = self.sparse_apply_ftrl(self.var, self.accum, self.linear, grad, indices) ... return out ... >>> net = SparseApplyFtrlNet() >>> grad = Tensor(np.array([[0.7]]).astype(np.float32)) >>> indices = Tensor(np.ones([1]), mindspore.int32) >>> output = net(grad, indices) >>> print(output) (Tensor(shape=[1, 1], dtype=Float32, value= [[2.00000003e-01]]), Tensor(shape=[1, 1], dtype=Float32, value= [[1.00000001e-01]]), Tensor(shape=[1, 1], dtype=Float32, value= [[6.00000024e-01]])) """ __mindspore_signature__ = ( sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('accum', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('linear', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('grad', dtype=sig.sig_dtype.T), sig.make_sig('indices', dtype=sig.sig_dtype.T1) ) @prim_attr_register def __init__(self, lr, l1, l2, lr_power, use_locking=False): """Initialize SparseApplyFtrl.""" validator.check_value_type("lr", lr, [float], self.name) validator.check_value_type("l1", l1, [float], self.name) validator.check_value_type("l2", l2, [float], self.name) validator.check_value_type("lr_power", lr_power, [float], self.name) self.lr = validator.check_positive_float(lr, "lr", self.name) self.l1 = validator.check_non_negative_float(l1, "l1", self.name) self.l2 = validator.check_non_negative_float(l2, "l2", self.name) self.lr_power = validator.check_number("lr_power", lr_power, 0, Rel.LE, self.name) self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name) self.init_prim_io_names(inputs=['var', 'accum', 'linear', 'grad', 'indices'], outputs=['var', 'accum', 'linear']) self.add_prim_attr('side_effect_mem', True) def check_shape(self, var_shape, accum_shape, linear_shape, grad_shape, indices_shape): validator.check('var shape', var_shape, 'accum shape', accum_shape, Rel.EQ, self.name) validator.check('var shape', var_shape, 'linear shape', linear_shape, Rel.EQ, self.name) if len(var_shape) > 1: validator.check('var_shape[1:]', var_shape[1:], 'grad_shape[1:]', grad_shape[1:], Rel.EQ, self.name) validator.check_int(len(indices_shape), 1, Rel.EQ, "indices rank", self.name) validator.check('grad_shape[0]', grad_shape[0], 'indices_shape[0]', indices_shape[0], Rel.EQ, self.name) def check_dtype(self, var_dtype, accum_dtype, linear_dtype, grad_dtype, indices_dtype): args = {"var_dtype": var_dtype, "accum_dtype": accum_dtype, "linear_dtype": linear_dtype, "grad_dtype": grad_dtype} validator.check_tensors_dtypes_same_and_valid(args, [mstype.float16, mstype.float32], self.name) validator.check_tensor_dtype_valid("indices_dtype", indices_dtype, [mstype.int32, mstype.int64], self.name)
[docs]class SparseApplyFtrlV2(PrimitiveWithInfer): """ Updates relevant entries according to the FTRL-proximal scheme. This class has one more attribute, named l2_shrinkage, than class SparseApplyFtrl. All of inputs except `indices` comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type. Args: lr (float): The learning rate value, must be positive. l1 (float): l1 regularization strength, must be greater than or equal to zero. l2 (float): l2 regularization strength, must be greater than or equal to zero. l2_shrinkage (float): L2 shrinkage regularization. lr_power (float): Learning rate power controls how the learning rate decreases during training, must be less than or equal to zero. Use fixed learning rate if `lr_power` is zero. use_locking (bool): If `True`, the var and accumulation tensors will be protected from being updated. Default: False. Inputs: - **var** (Parameter) - The variable to be updated. The data type must be float16 or float32. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. - **accum** (Parameter) - The accumulation to be updated, must be same data type and shape as `var`. - **linear** (Parameter) - the linear coefficient to be updated, must be same data type and shape as `var`. - **grad** (Tensor) - A tensor of the same type as `var` and grad.shape[1:] = var.shape[1:] if var.shape > 1. - **indices** (Tensor) - A vector of indices in the first dimension of `var` and `accum`. The type must be int32 and indices.shape[0] = grad.shape[0]. Outputs: Tuple of 3 Tensor, the updated parameters. - **var** (Tensor) - Tensor, has the same shape and data type as `var`. - **accum** (Tensor) - Tensor, has the same shape and data type as `accum`. - **linear** (Tensor) - Tensor, has the same shape and data type as `linear`. Raises: TypeError: If `lr`, `l1`, `l2`, `lr_power` or `use_locking` is not a float. TypeError: If `use_locking` is not a bool. TypeError: If dtype of `var`, `accum`, `linear` or `grad` is neither float16 nor float32. TypeError: If dtype of `indices` is not int32. RuntimeError: If the data type of all of inputs except `indices` conversion of Parameter is not supported. Supported Platforms: ``Ascend`` Examples: >>> class SparseApplyFtrlV2Net(nn.Cell): ... def __init__(self): ... super(SparseApplyFtrlV2Net, self).__init__() ... self.sparse_apply_ftrl_v2 = ops.SparseApplyFtrlV2(lr=0.01, l1=0.0, l2=0.0, ... l2_shrinkage=0.0, lr_power=-0.5) ... self.var = Parameter(Tensor(np.array([[0.2, 0.3]]).astype(np.float32)), name="var") ... self.accum = Parameter(Tensor(np.array([[0.5, 0.9]]).astype(np.float32)), name="accum") ... self.linear = Parameter(Tensor(np.array([[0.7, 0.5]]).astype(np.float32)), name="linear") ... ... def construct(self, grad, indices): ... out = self.sparse_apply_ftrl_v2(self.var, self.accum, self.linear, grad, indices) ... return out ... >>> net = SparseApplyFtrlV2Net() >>> grad = Tensor(np.array([[0.8, 0.5]]).astype(np.float32)) >>> indices = Tensor(np.ones([1]), mindspore.int32) >>> output = net(grad, indices) >>> print(output) (Tensor(shape=[1, 2], dtype=Float32, value= [[ 2.00000003e-01, 3.00000012e-01]]), Tensor(shape=[1, 2], dtype=Float32, value= [[ 5.00000000e-01, 8.99999976e-01]]), Tensor(shape=[1, 2], dtype=Float32, value= [[ 6.99999988e-01, 5.00000000e-01]])) """ __mindspore_signature__ = ( sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('accum', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('linear', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('grad', dtype=sig.sig_dtype.T), sig.make_sig('indices', dtype=sig.sig_dtype.T1) ) @prim_attr_register def __init__(self, lr, l1, l2, l2_shrinkage, lr_power, use_locking=False): """Initialize SparseApplyFtrlV2.""" validator.check_value_type("lr", lr, [float], self.name) validator.check_value_type("l1", l1, [float], self.name) validator.check_value_type("l2", l2, [float], self.name) validator.check_value_type("lr_power", lr_power, [float], self.name) self.lr = validator.check_positive_float(lr, "lr", self.name) self.l1 = validator.check_non_negative_float(l1, "l1", self.name) self.l2 = validator.check_non_negative_float(l2, "l2", self.name) self.lr_power = validator.check_number("lr_power", lr_power, 0, Rel.LE, self.name) self.l2_shrinkage = validator.check_value_type("l2_shrinkage", l2_shrinkage, [float], self.name) self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name) self.add_prim_attr('side_effect_mem', True) def infer_shape(self, var_shape, accum_shape, linear_shape, grad_shape, indices_shape): validator.check('var shape', var_shape, 'accum shape', accum_shape, Rel.EQ, self.name) validator.check('var shape', var_shape, 'linear shape', linear_shape, Rel.EQ, self.name) if len(var_shape) > 1: validator.check('var_shape[1:]', var_shape[1:], 'grad_shape[1:]', grad_shape[1:], Rel.EQ, self.name) validator.check_int(len(indices_shape), 1, Rel.EQ, "indices rank", self.name) validator.check('grad_shape[0]', grad_shape[0], 'indices_shape[0]', indices_shape[0], Rel.EQ, self.name) return var_shape, accum_shape, linear_shape def infer_dtype(self, var_dtype, accum_dtype, linear_dtype, grad_dtype, indices_dtype): args = {"var_dtype": var_dtype, "accum_dtype": accum_dtype, "linear_dtype": linear_dtype, "grad_dtype": grad_dtype} validator.check_tensors_dtypes_same_and_valid(args, [mstype.float16, mstype.float32], self.name) validator.check_tensor_dtype_valid("indicese", indices_dtype, [mstype.int32], self.name) return var_dtype, accum_dtype, linear_dtype
[docs]class Dropout(PrimitiveWithCheck): """ During training, randomly zeroes some of the elements of the input tensor with probability 1-`keep_prob` from a Bernoulli distribution. Args: keep_prob (float): The keep rate, between 0 and 1, e.g. keep_prob = 0.9, means dropping out 10% of input units. Default: 0.5. Seed0 (int): Seed0 value for random generating. Default: 0. Seed1 (int): Seed1 value for random generating. Default: 0. Inputs: - **x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of additional dimensions, with float16 or float32 data type. Outputs: - **output** (Tensor) - With the same shape and data type as `x`. - **mask** (Tensor) - With the same shape as `x`. Raises: TypeError: If `keep_prob` is not a float. TypeError: If `Seed0` or `Seed1` is not an int. TypeError: If dtype of `x` is neither float16 nor float32. TypeError: If `x` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> dropout = ops.Dropout(keep_prob=0.5) >>> x = Tensor(((20, 16), (50, 50)), mindspore.float32) >>> output, mask = dropout(x) >>> print(output.shape) (2, 2) """ @prim_attr_register def __init__(self, keep_prob=0.5, Seed0=0, Seed1=0): """Initialize Dropout.""" self.seed0 = validator.check_value_type("Seed0", Seed0, [int], self.name) self.seed1 = validator.check_value_type("Seed1", Seed1, [int], self.name) self.keep_prob = validator.check_float_range(keep_prob, 0, 1, Rel.INC_RIGHT, "keep_prob", self.name) def check_shape(self, x_shape): validator.check_int(len(x_shape), 1, Rel.GE, "x_shape", self.name) def check_dtype(self, x_dtype): valid_dtypes = (mstype.float16, mstype.float32) validator.check_tensor_dtype_valid("x", x_dtype, valid_dtypes, self.name)
[docs]class Dropout2D(PrimitiveWithInfer): """ During training, randomly zeroes some of the channels of the input tensor with probability 1-`keep_prob` from a Bernoulli distribution(For a 4-dimensional tensor with a shape of NCHW, the channel feature map refers to a 2-dimensional feature map with the shape of HW). For example, the :math:`j_th` channel of the :math:`i_th` sample in the batched input is a 2D tensor input[i,j]. Each channel will be zeroed out independently on every forward call with probability 1-`keep_prob` using samples from a Bernoulli distribution. Dropout2D can improve the independence between channel feature maps. Args: keep_prob (float): The keep probability of a channel, between 0 and 1, e.g. `keep_prob` = 0.8, means dropping out 20% of channels. Default: 0.5. Inputs: - **x** (Tensor) - A 4-D tensor with shape :math:`(N, C, H, W)`, where N is the batch size, C is the number of channels, H is the feature height, and W is the feature width. The data type should be int8, int16, int32, int64, float16 or float32. Outputs: - **output** (Tensor) - With the same shape and data type as `x`. - **mask** (Tensor) - With the same shape as `x` and the data type is bool. Raises: TypeError: If the data type of `keep_prob` is not float. ValueError: If `keep_prob` is out of the range [0.0, 1.0]; or if the dim of input is not 4-D. Supported Platforms: ``Ascend`` Examples: >>> dropout = ops.Dropout2D(keep_prob=0.5) >>> x = Tensor(np.ones([2, 1, 2, 3]), mindspore.float32) >>> output, mask = dropout(x) >>> print(output.shape) (2, 1, 2, 3) """ @prim_attr_register def __init__(self, keep_prob=0.5): """Initialize Dropout2D.""" self.keep_prob = validator.check_value_type("keep_prob", keep_prob, [float], self.name) self.keep_prob = validator.check_float_range(keep_prob, 0.0, 1.0, Rel.INC_BOTH, "keep_prob", self.name) def infer_shape(self, x_shape): validator.check_int(len(x_shape), 4, Rel.EQ, "dim of input", self.name) return x_shape, x_shape def infer_dtype(self, x_dtype): valid_dtypes = mstype.int_type + (mstype.float16, mstype.float32) validator.check_tensor_dtype_valid("x", x_dtype, valid_dtypes, self.name) mask_dtype = mstype.tensor_type(mstype.bool_) return x_dtype, mask_dtype
[docs]class Dropout3D(PrimitiveWithInfer): """ During training, randomly zeroes some of the channels of the input tensor with probability 1-`keep_prob` from a Bernoulli distribution(For a 5-dimensional tensor with a shape of NCDHW, the channel feature map refers to a 3-dimensional feature map with a shape of DHW). For example, the :math:`j_th` channel of the :math:`i_th` sample in the batched input is a 3D tensor input[i,j,k]. Each channel will be zeroed out independently on every forward call with probability 1-`keep_prob` using samples from a Bernoulli distribution. Dropout3D can improve the independence between channel feature maps. Args: keep_prob (float): The keep probability of a channel, between 0 and 1, e.g. `keep_prob` = 0.8, means dropping out 20% of channels. Default: 0.5. Inputs: - **x** (Tensor) - A 5-D tensor with shape :math:`(N, C, D, H, W)`, where N is the batch size, C is the number of channels, D is the feature depth, H is the feature height, and W is the feature width. The data type should be int8, int16, int32, int64, float16 or float32. Outputs: - **output** (Tensor) - With the same shape and data type as `x`. - **mask** (Tensor) - With the same shape as `x` and the data type is bool. Raises: TypeError: If the data type of `keep_prob` is not float. ValueError: If `keep_prob` is out of the range [0.0, 1.0]; or if the dim of input is not 5-D. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> dropout = ops.Dropout3D(keep_prob=0.5) >>> x = Tensor(np.ones([2, 1, 2, 1, 2]), mindspore.float32) >>> output, mask = dropout(x) >>> print(output.shape) (2, 1, 2, 1, 2) """ @prim_attr_register def __init__(self, keep_prob=0.5): """Initialize Dropout3D.""" self.keep_prob = validator.check_value_type("keep_prob", keep_prob, [float], self.name) self.keep_prob = validator.check_float_range(keep_prob, 0.0, 1.0, Rel.INC_BOTH, "keep_prob", self.name) def infer_shape(self, x_shape): validator.check_int(len(x_shape), 5, Rel.EQ, "dim of input", self.name) return x_shape, x_shape def infer_dtype(self, x_dtype): valid_dtypes = mstype.int_type + (mstype.float16, mstype.float32) validator.check_tensor_dtype_valid("x", x_dtype, valid_dtypes, self.name) mask_dtype = mstype.tensor_type(mstype.bool_) return x_dtype, mask_dtype
[docs]class CTCLoss(Primitive): r""" Calculates the CTC (Connectionist Temporal Classification) loss and the gradient. The bottom layer of this interface calls the implementation of the third-party baidu-research::warp-ctc. The CTC algorithm is proposed in `Connectionist Temporal Classification: Labeling Unsegmented Sequence Data with Recurrent Neural Networks <http://www.cs.toronto.edu/~graves/icml_2006.pdf>`_. CTCLoss calculates loss between a continuous time series and a target sequence. CTCLoss sums over the probability of input to target, producing a loss value which is differentiable with respect to each input node. The alignment of input to target is assumed to be “many-to-one”, such that the length of target series must be less than or equal to the length of input. Args: preprocess_collapse_repeated (bool): If true, repeated labels will be collapsed prior to the CTC calculation. Default: False. ctc_merge_repeated (bool): If false, during CTC calculation, repeated non-blank labels will not be merged and these labels will be interpreted as individual ones. This is a simplified version of CTC. Default: True. ignore_longer_outputs_than_inputs (bool): If true, sequences with longer outputs than inputs will be ignored. Default: False. Inputs: - **x** (Tensor) - The input Tensor must be a `3-D` tensor whose shape is :math:`(max\_time, batch\_size, num\_classes)`. `num_classes` must be `num_labels + 1` classes, `num_labels` indicates the number of actual labels. Blank labels are reserved. Default blank label is `num_classes - 1`. Data type must be float16, float32 or float64. - **labels_indices** (Tensor) - The indices of labels. `labels_indices[i, :] = [b, t]` means `labels_values[i]` stores the id for `(batch b, time t)`. The type must be int64 and rank must be 2. - **labels_values** (Tensor) - A `1-D` input tensor. The values are associated with the given batch and time. The type must be int32. `labels_values[i]` must be in the range of `[0, num_classes)`. - **sequence_length** (Tensor) - A tensor containing sequence lengths with the shape of :math:`(batch\_size, )`. The type must be int32. Each value in the tensor must not be greater than `max_time`. Outputs: - **loss** (Tensor) - A tensor containing log-probabilities, the shape is :math:`(batch\_size, )`. The tensor has the same data type as `x`. - **gradient** (Tensor) - The gradient of `loss`, has the same shape and data type as `x`. Raises: TypeError: If `preprocess_collapse_repeated`, `ctc_merge_repeated` or `ignore_longer_outputs_than_inputs` is not a bool. TypeError: If `x`, `labels_indices`, `labels_values` or `sequence_length` is not a Tensor. ValueError: If rank of `labels_indices` is not equal to 2. TypeError: If dtype of `x` is not one of the following: float16, float32 nor float64. TypeError: If dtype of `labels_indices` is not int64. TypeError: If dtype of `labels_values` or `sequence_length` is not int32. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> x = Tensor(np.array([[[0.3, 0.6, 0.6], ... [0.4, 0.3, 0.9]], ... ... [[0.9, 0.4, 0.2], ... [0.9, 0.9, 0.1]]]).astype(np.float32)) >>> labels_indices = Tensor(np.array([[0, 0], [1, 0]]), mindspore.int64) >>> labels_values = Tensor(np.array([2, 2]), mindspore.int32) >>> sequence_length = Tensor(np.array([2, 2]), mindspore.int32) >>> ctc_loss = ops.CTCLoss() >>> loss, gradient = ctc_loss(x, labels_indices, labels_values, sequence_length) >>> print(loss) [ 0.79628 0.5995158 ] >>> print(gradient) [[[ 0.27029088 0.36485454 -0.6351454 ] [ 0.28140804 0.25462854 -0.5360366 ]] [[ 0.47548494 0.2883962 0.04510255 ] [ 0.4082751 0.4082751 0.02843709 ]]] """ @prim_attr_register def __init__(self, preprocess_collapse_repeated=False, ctc_merge_repeated=True, ignore_longer_outputs_than_inputs=False): """Initialize CTCLoss.""" self.init_prim_io_names(inputs=["inputs", "labels_indices", "labels_values", "sequence_length"], outputs=["loss", "gradient"]) validator.check_value_type("preprocess_collapse_repeated", preprocess_collapse_repeated, [bool], self.name) self.preprocess_collapse_repeated_ = preprocess_collapse_repeated self.ctc_merge_repeated_ = validator.check_value_type("ctc_merge_repeated", ctc_merge_repeated, [bool], self.name) validator.check_value_type("ignore_longer_outputs_than_inputs", ignore_longer_outputs_than_inputs, [bool], self.name) self.ignore_longer_outputs_than_inputs_ = ignore_longer_outputs_than_inputs
[docs]class CTCGreedyDecoder(PrimitiveWithCheck): r""" Performs greedy decoding on the logits given in inputs. Args: merge_repeated (bool): If true, merge repeated classes in output. Default: True. Inputs: - **inputs** (Tensor) - The input Tensor must be a 3-D tensor whose shape is :math:`(max\_time, batch\_size, num\_classes)`. `num_classes` must be `num_labels + 1` classes, `num_labels` indicates the number of actual labels. Blank labels are reserved. Default blank label is `num_classes - 1`. Data type must be float32 or float64. - **sequence_length** (Tensor) - A tensor containing sequence lengths with the shape of :math:`(batch\_size, )`. The type must be int32. Each value in the tensor must be equal to or less than `max_time`. Outputs: - **decoded_indices** (Tensor) - A tensor with shape of :math:`(total\_decoded\_outputs, 2)`. Data type is int64. - **decoded_values** (Tensor) - A tensor with shape of :math:`(total\_decoded\_outputs, )`, it stores the decoded classes. Data type is int64. - **decoded_shape** (Tensor) - A tensor with shape of :math:`(batch\_size, max\_decoded\_legth)`. Data type is int64. - **log_probability** (Tensor) - A tensor with shape of :math:`(batch\_size, 1)`, containing sequence log-probability, has the same type as `inputs`. Raises: TypeError: If `merge_repeated` is not a bool. ValueError: If length of shape of `inputs` is not equal to 3. ValueError: If length of shape of `sequence_length` is not equal to 1. Supported Platforms: ``Ascend`` Examples: >>> inputs = Tensor(np.array([[[0.6, 0.4, 0.2], [0.8, 0.6, 0.3]], ... [[0.0, 0.6, 0.0], [0.5, 0.4, 0.5]]]), mindspore.float32) >>> sequence_length = Tensor(np.array([2, 2]), mindspore.int32) >>> ctc_greedyDecoder = ops.CTCGreedyDecoder() >>> decoded_indices, decoded_values, decoded_shape, log_probability = ctc_greedyDecoder(inputs, sequence_length) >>> print(decoded_indices) [[0 0] [0 1] [1 0]] >>> print(decoded_values) [0 1 0] >>> print(decoded_shape) [2 2] >>> print(log_probability) [[-1.2] [-1.3]] """ @prim_attr_register def __init__(self, merge_repeated=True): """Initialize CTCGreedyDecoder.""" self.merge_repeated = validator.check_value_type("merge_repeated", merge_repeated, [bool], self.name) def check_shape(self, inputs_shape, sequence_length_shape): validator.check_int(len(inputs_shape), 3, Rel.EQ, "inputs rank", self.name) validator.check_int(len(sequence_length_shape), 1, Rel.EQ, "sequence_length rank", self.name) validator.check('inputs batch_size', inputs_shape[1], 'sequence_length batch_size', sequence_length_shape[0], Rel.EQ, self.name) total_decoded_outputs = -1 decoded_indices_shape = [total_decoded_outputs, 2] decoded_values = [total_decoded_outputs] decoded_shape = [2] log_probability_shape = [inputs_shape[1], 1] return decoded_indices_shape, decoded_values, decoded_shape, log_probability_shape def check_dtype(self, inputs_dtype, sequence_length_dtype): validator.check_tensor_dtype_valid("inputs_dtype", inputs_dtype, [mstype.float32, mstype.double], self.name) validator.check_tensor_dtype_valid("sequence_length_dtype", sequence_length_dtype, [mstype.int32], self.name) decoded_type = mstype.tensor_type(mstype.int64) return decoded_type, decoded_type, decoded_type, inputs_dtype
[docs]class BasicLSTMCell(PrimitiveWithInfer): """ It's similar to operator :class:`DynamicRNN`. BasicLSTMCell will be deprecated in the future. Please use DynamicRNN instead. Supported Platforms: Deprecated """ @prim_attr_register def __init__(self, keep_prob=1.0, forget_bias=1.0, state_is_tuple=True, activation='tanh'): """Initialize BasicLSTMCell.""" self.keep_prob = validator.check_value_type("keep_prob", keep_prob, [float], self.name) self.keep_prob = validator.check_float_range(keep_prob, 0.0, 1.0, Rel.INC_BOTH, "keep_prob", self.name) self.forget_bias = validator.check_value_type("forget_bias", forget_bias, [float], self.name) self.state_is_tuple = validator.check_value_type("state_is_tuple", state_is_tuple, [bool], self.name) self.activation = validator.check_string(activation, ['tanh'], "activation", self.name) def infer_shape(self, x_shape, h_shape, c_shape, w_shape, b_shape): validator.check_int(len(x_shape), 2, Rel.EQ, "x rank", self.name) validator.check_int(len(h_shape), 2, Rel.EQ, "h rank", self.name) validator.check_int(len(c_shape), 2, Rel.EQ, "c rank", self.name) validator.check_int(len(w_shape), 2, Rel.EQ, "w rank", self.name) validator.check_int(len(b_shape), 1, Rel.EQ, "b rank", self.name) validator.check("x_shape[0]", x_shape[0], "h_shape[0]", h_shape[0], Rel.EQ, self.name) validator.check("c_shape[0]", c_shape[0], "h_shape[0]", h_shape[0], Rel.EQ, self.name) validator.check("c_shape[1]", c_shape[1], "h_shape[1]", h_shape[1], Rel.EQ, self.name) validator.check("w_shape[1]", w_shape[1], "4*h_shape[1]", 4 * h_shape[1], Rel.EQ, self.name) validator.check("w_shape[0]", w_shape[0], "x_shape[1]+h_shape[1]", x_shape[1] + h_shape[1], Rel.EQ, self.name) validator.check("b_shape[0]", b_shape[0], "4*h_shape[1]", 4 * h_shape[1], Rel.EQ, self.name) ct_shape = c_shape ht_shape = c_shape it_shape = c_shape jt_shape = c_shape ft_shape = c_shape ot_shape = c_shape tanhct_shape = c_shape return ct_shape, ht_shape, it_shape, jt_shape, ft_shape, ot_shape, tanhct_shape def infer_dtype(self, x_dtype, h_dtype, c_dtype, w_dtype, b_dtype): tuple(map(partial(validator.check_tensor_dtype_valid, valid_dtypes=(mstype.float16, mstype.float32), prim_name=self.name), ("x_dtype", "h_dtype", "w_dtype"), (x_dtype, h_dtype, w_dtype))) args = {"c_dtype": c_dtype, "b_dtype": b_dtype} validator.check_tensors_dtypes_same_and_valid(args, [mstype.float16, mstype.float32], self.name) return c_dtype, mstype.float16, c_dtype, c_dtype, c_dtype, c_dtype, c_dtype
[docs]class DynamicRNN(PrimitiveWithInfer): r""" Applies a recurrent neural network to the input. Only long short-term memory (LSTM) is supported currently. .. math:: \begin{array}{ll} \\ i_{t+1} = \sigma(W_{ix} x_{t+1} + b_{ix} + W_{ih} h_{(t)} + b_{ih}) \\ f_{t+1} = \sigma(W_{fx} x_{t+1} + b_{fx} + W_{fh} h_{(t)} + b_{fh}) \\ \tilde{c}_{t+1} = \tanh(W_{cx} x_{t+1} + b_{cx} + W_{ch} h_{(t)} + b_{ch}) \\ o_{t+1} = \sigma(W_{ox} x_{t+1} + b_{ox} + W_{oh} h_{(t)} + b_{oh}) \\ c_{t+1} = f_{t+1} * c_{(t)} + i_t * \tilde{c}_{t+1} \\ h_{t+1} = o_{t+1} * \tanh(c_{t+1}) \\ \end{array} where :math:`h_{t+1}` is the hidden state at time `t+1`, :math:`x_{t+1}` is the input at time `t+1`, :math:`h_{t}` is the hidden state of the layer at time `t` or the initial hidden state at time `0`, :math:`\sigma` is the sigmoid function, and :math:`*` is the Hadamard product. :math:`W, b` are learnable weights between the output and the input in the formula. For instance, :math:`W_{ix}, b_{ix}` are the weight and bias used to transform from input :math:`x` to :math:`i`. Args: cell_type (str): A string identifying the cell type in the operator. Default: 'LSTM'. Only 'LSTM' is currently supported. direction (str): A string identifying the direction in the operator. Default: 'UNIDIRECTIONAL'. Only 'UNIDIRECTIONAL' is currently supported. cell_depth (int): An integer identifying the cell depth in the operator. Default: 1. use_peephole (bool): A bool identifying if use peephole in the operator. Default: False. keep_prob (float): A float identifying the keep prob in the operator. Default: 1.0. cell_clip (float): A float identifying the cell clip in the operator. Default: -1.0. num_proj (int): An integer identifying the number projection in the operator. Default: 0. time_major (bool): A bool identifying the time major in the operator. Default: True. Only `True` is currently supported. activation (str): A string identifying the type of activation function in the operator. Default: 'tanh'. Only 'tanh' is currently supported. forget_bias (float): A float identifying the forget bias in the operator. Default: 0.0. is_training (bool): A bool identifying is training in the operator. Default: True. Inputs: - **x** (Tensor) - Current words. Tensor of shape :math:`(num\_step, batch\_size, input\_size)`. The data type must be float16. - **w** (Tensor) - Weight. Tensor of shape :math:`(input\_size + hidden\_size, 4 * hidden\_size)`. The data type must be float16. - **b** (Tensor) - Bias. Tensor of shape :math:`(4 * hidden\_size)`. The data type must be float16 or float32. - **seq_length** (Tensor) - The length of each batch. Tensor of shape :math:`(batch\_size, )`. Only `None` is currently supported. - **init_h** (Tensor) - Hidden state of initial time. Tensor of shape :math:`(1, batch\_size, hidden\_size)`. The data type must be float16. - **init_c** (Tensor) - Cell state of initial time. Tensor of shape :math:`(1, batch\_size, hidden\_size)`. The data type must be float16. Outputs: - **y** (Tensor) - A Tensor of shape :math:`(num\_step, batch\_size, hidden\_size)`. Has the same type with input `b`. - **output_h** (Tensor) - A Tensor of shape :math:`(num\_step, batch\_size, hidden\_size)`. With data type of float16. - **output_c** (Tensor) - A Tensor of shape :math:`(num\_step, batch\_size, hidden\_size)`. Has the same type with input `b`. - **i** (Tensor) - A Tensor of shape :math:`(num\_step, batch\_size, hidden\_size)`. Has the same type with input `b`. - **j** (Tensor) - A Tensor of shape :math:`(num\_step, batch\_size, hidden\_size)`. Has the same type with input `b`. - **f** (Tensor) - A Tensor of shape :math:`(num\_step, batch\_size, hidden\_size)`. Has the same type with input `b`. - **o** (Tensor) - A Tensor of shape :math:`(num\_step, batch\_size, hidden\_size)`. Has the same type with input `b`. - **tanhct** (Tensor) - A Tensor of shape :math:`(num\_step, batch\_size, hidden\_size)`. Has the same type with input `b`. Raises: TypeError: If `cell_type`, `direction` or `activation` is not a str. TypeError: If `cell_depth` or `num_proj` is not an int. TypeError: If `keep_prob`, `cell_clip` or `forget_bias` is not a float. TypeError: If `use_peehpole`, `time_major` or `is_training` is not a bool. TypeError: If `x`, `w`, `b`, `seq_length`, `init_h` or `init_c` is not a Tensor. TypeError: If dtype of `x`, `w`, `init_h` or `init_c` is not float16. TypeError: If dtype of `b` is neither float16 nor float32. Supported Platforms: ``Ascend`` Examples: >>> x = Tensor(np.random.rand(2, 16, 64).astype(np.float16)) >>> w = Tensor(np.random.rand(96, 128).astype(np.float16)) >>> b = Tensor(np.random.rand(128).astype(np.float16)) >>> init_h = Tensor(np.random.rand(1, 16, 32).astype(np.float16)) >>> init_c = Tensor(np.random.rand(1, 16, 32).astype(np.float16)) >>> dynamic_rnn = ops.DynamicRNN() >>> output = dynamic_rnn(x, w, b, None, init_h, init_c) >>> print(output[0].shape) (2, 16, 32) """ @prim_attr_register def __init__(self, cell_type='LSTM', direction='UNIDIRECTIONAL', cell_depth=1, use_peephole=False, keep_prob=1.0, cell_clip=-1.0, num_proj=0, time_major=True, activation='tanh', forget_bias=0.0, is_training=True): """Initialize DynamicRNN.""" self.forget_bias = validator.check_value_type("forget_bias", forget_bias, [float], self.name) self.cell_depth = validator.check_value_type("cell_depth", cell_depth, [int], self.name) self.keep_prob = validator.check_value_type("keep_prob", keep_prob, [float], self.name) self.cell_clip = validator.check_value_type("cell_clip", cell_clip, [float], self.name) self.num_proj = validator.check_non_negative_int(num_proj, "num_proj", self.name) self.forget_bias = validator.check_value_type("forget_bias", forget_bias, [float], self.name) self.use_peephole = validator.check_value_type("use_peephole", use_peephole, [bool], self.name) self.time_major = validator.check_value_type("time_major", time_major, [bool], self.name) self.is_training = validator.check_value_type("is_training", is_training, [bool], self.name) validator.check_value_type("cell_type", cell_type, [str], self.name) self.cell_type = validator.check_string(cell_type, ['LSTM'], "cell_type", self.name) validator.check_value_type("direction", direction, [str], self.name) self.direction = validator.check_string(direction, ['UNIDIRECTIONAL'], "direction", self.name) validator.check_value_type("activation", activation, [str], self.name) self.activation = validator.check_string(activation, ['tanh'], "activation", self.name) def infer_shape(self, x_shape, w_shape, b_shape, seq_shape, h_shape, c_shape): validator.check_int(len(x_shape), 3, Rel.EQ, "x_shape", self.name) validator.check_int(len(w_shape), 2, Rel.EQ, "w rank", self.name) validator.check_int(len(b_shape), 1, Rel.EQ, "b rank", self.name) validator.check_int(len(h_shape), 3, Rel.EQ, "h_shape", self.name) validator.check_int(len(c_shape), 3, Rel.EQ, "c_shape", self.name) if seq_shape is not None: raise ValueError(f"For '{self.name}', the 'seq_length' should be None.") num_step, batch_size, input_size = x_shape hidden_size = w_shape[-1] // 4 validator.check("b_shape[-1]", b_shape[-1], "w_shape[-1]", w_shape[-1], Rel.EQ, self.name) if w_shape[-1] % 4 != 0: raise ValueError(f"For '{self.name}', the last dimension of 'w' should be a multiple of 4, " f"but got {w_shape[-1]}.") validator.check("w_shape[0]", w_shape[0], "input_size + hidden_size", input_size + hidden_size, Rel.EQ, self.name) validator.check("b_shape[0]", b_shape[0], "w_shape[1]", w_shape[1], Rel.EQ, self.name) validator.check_int(h_shape[0], 1, Rel.EQ, "h_shape[0]", self.name) validator.check("h_shape[1]", h_shape[1], "batch_size", batch_size, Rel.EQ, self.name) validator.check("h_shape[2]", h_shape[2], "hidden_size", hidden_size, Rel.EQ, self.name) validator.check("c_shape", c_shape, "h_shape", h_shape, Rel.EQ, self.name) self.placeholder_index = [3] self.add_prim_attr("placeholder_index", self.placeholder_index) self.add_prim_attr("input_size", input_size) self.add_prim_attr("hidden_size", hidden_size) y_shape = (num_step, batch_size, hidden_size) return y_shape, y_shape, y_shape, y_shape, y_shape, y_shape, y_shape, y_shape def infer_dtype(self, x_dtype, w_dtype, b_dtype, seq_dtype, h_dtype, c_dtype): tuple(map(partial(validator.check_tensor_dtype_valid, valid_dtypes=[mstype.float16], prim_name=self.name), ("x", "w", "h", "c"), (x_dtype, w_dtype, h_dtype, c_dtype))) validator.check_tensor_dtype_valid("b", b_dtype, (mstype.float16, mstype.float32), self.name) return b_dtype, x_dtype, b_dtype, b_dtype, b_dtype, b_dtype, b_dtype, b_dtype
[docs]class DynamicGRUV2(PrimitiveWithInfer): r""" Applies a single-layer gated recurrent unit (GRU) to an input sequence. .. math:: \begin{array}{ll} r_{t+1} = \sigma(W_{ir} x_{t+1} + b_{ir} + W_{hr} h_{(t)} + b_{hr}) \\ z_{t+1} = \sigma(W_{iz} x_{t+1} + b_{iz} + W_{hz} h_{(t)} + b_{hz}) \\ n_{t+1} = \tanh(W_{in} x_{t+1} + b_{in} + r_{t+1} * (W_{hn} h_{(t)}+ b_{hn})) \\ h_{t+1} = (1 - z_{t+1}) * n_{t+1} + z_{t+1} * h_{(t)} \end{array} where :math:`h_{t+1}` is the hidden state at time `t+1`, :math:`x_{t+1}` is the input at time `t+1`, :math:`h_{t}` is the hidden state of the layer at time `t` or the initial hidden state at time `0`, and :math:`r_{t+1}`, :math:`z_{t+1}`, :math:`n_{t+1}` are the reset, update, and new gates, respectively. :math:`W`, :math:`b` are the weight parameter and the deviation parameter respectively. :math:`\sigma` is the sigmoid function, and :math:`*` is the Hadamard product. Args: direction (str): A string identifying the direction in the operator. Default: 'UNIDIRECTIONAL'. Only 'UNIDIRECTIONAL' is currently supported. cell_depth (int): An integer identifying the cell depth in the operator. Default: 1. keep_prob (float): A float identifying the keep prob in the operator. Default: 1.0. cell_clip (float): A float identifying the cell clip in the operator. Default: -1.0. num_proj (int): An integer identifying the number projection in the operator. Default: 0. time_major (bool): A bool identifying the time major in the operator. Default: True. activation (str) : A string identifying the type of activation function in the operator. Default: 'tanh'. Only 'tanh' is currently supported. gate_order (str): A string identifying the gate order in weight and bias. Default: 'rzh'. 'zrh' is another option. Here, 'rzh' means the gate order is: reset gate, update gate, hidden gate. 'zrh' means the gate order is: update gate, reset gate, hidden gate. reset_after (bool): A bool identifying whether to apply reset gate after matrix multiplication. Default: True. is_training (bool): A bool identifying is training in the operator. Default: True. Inputs: - **x** (Tensor) - Current words. Tensor of shape :math:`(\text{num_step}, \text{batch_size}, \text{input_size})`. The data type must be float16. - **weight_input** (Tensor) - Input-hidden weight. Tensor of shape :math:`(\text{input_size}, 3 \times \text{hidden_size})`. The data type must be float16. - **weight_hidden** (Tensor) - Hidden-hidden weight. Tensor of shape :math:`(\text{hidden_size}, 3 \times \text{hidden_size})`. The data type must be float16. - **bias_input** (Tensor) - Input-hidden bias. Tensor of shape :math:`(3 \times \text{hidden_size})`, or None. Has the same data type with input `init_h`. - **bias_hidden** (Tensor) - Hidden-hidden bias. Tensor of shape :math:`(3 \times \text{hidden_size})`, or None. Has the same data type with input `init_h`. - **seq_length** (Tensor) - The length of each batch. Tensor of shape :math:`(\text{batch_size})`. Only `None` is currently supported. - **init_h** (Tensor) - Hidden state of initial time. Tensor of shape :math:`(\text{batch_size}, \text{hidden_size})`. The data type must be float16 or float32. Outputs: - **y** (Tensor) - A Tensor of shape: - y_shape = :math:`(num\_step, batch\_size, min(hidden\_size, num\_proj))`: `If num_proj > 0`, - y_shape = :math:`(num\_step, batch\_size, hidden\_size)`: `If num_proj = 0`. Has the same data type with input `bias_type`. - **output_h** (Tensor) - A Tensor of shape :math:`(\text{num_step}, \text{batch_size}, \text{hidden_size})`. Has the same data type with input `bias_type`. - **update** (Tensor) - A Tensor of shape :math:`(\text{num_step}, \text{batch_size}, \text{hidden_size})`. Has the same data type with input `bias_type`. - **reset** (Tensor) - A Tensor of shape :math:`(\text{num_step}, \text{batch_size}, \text{hidden_size})`. Has the same data type with input `bias_type`. - **new** (Tensor) - A Tensor of shape :math:`(\text{num_step}, \text{batch_size}, \text{hidden_size})`. Has the same data type with input `bias_type`. - **hidden_new** (Tensor) - A Tensor of shape :math:`(\text{num_step}, \text{batch_size}, \text{hidden_size})`. Has the same data type with input `bias_type`. A note about the bias_type: - If `bias_input` and `bias_hidden` both are `None`, `bias_type` is the data type of `init_h`. - If `bias_input` is not `None`, `bias_type` is the data type of `bias_input`. - If `bias_input` is `None` and `bias_hidden` is not `None`, `bias_type` is the data type of `bias_hidden`. Raises: TypeError: If `direction`, `activation` or `gate_order` is not a str. TypeError: If `cell_depth` or `num_proj` is not an int. TypeError: If `keep_prob` or `cell_clip` is not a float. TypeError: If `time_major`, `reset_after` or `is_training` is not a bool. TypeError: If `x`, `weight_input`, `weight_hidden`, `bias_input`, `bias_hidden`, `seq_length` or `ini_h` is not a Tensor. TypeError: If dtype of `x`, `weight_input` or `weight_hidden` is not float16. TypeError: If dtype of `init_h` is neither float16 nor float32. Supported Platforms: ``Ascend`` Examples: >>> x = Tensor(np.random.rand(2, 8, 64).astype(np.float16)) >>> weight_i = Tensor(np.random.rand(64, 48).astype(np.float16)) >>> weight_h = Tensor(np.random.rand(16, 48).astype(np.float16)) >>> bias_i = Tensor(np.random.rand(48).astype(np.float16)) >>> bias_h = Tensor(np.random.rand(48).astype(np.float16)) >>> init_h = Tensor(np.random.rand(8, 16).astype(np.float16)) >>> dynamic_gru_v2 = ops.DynamicGRUV2() >>> output = dynamic_gru_v2(x, weight_i, weight_h, bias_i, bias_h, None, init_h) >>> print(output[0].shape) (2, 8, 16) """ @prim_attr_register def __init__(self, direction='UNIDIRECTIONAL', cell_depth=1, keep_prob=1.0, cell_clip=-1.0, num_proj=0, time_major=True, activation="tanh", gate_order="rzh", reset_after=True, is_training=True): """Initialize DynamicGRUV2.""" self.cell_depth = validator.check_value_type("cell_depth", cell_depth, [int], self.name) self.keep_prob = validator.check_value_type("keep_prob", keep_prob, [float], self.name) self.cell_clip = validator.check_value_type("cell_clip", cell_clip, [float], self.name) self.num_proj = validator.check_non_negative_int(num_proj, "num_proj", self.name) self.time_major = validator.check_value_type("time_major", time_major, [bool], self.name) self.is_training = validator.check_value_type("is_training", is_training, [bool], self.name) self.direction = validator.check_string(direction, ['UNIDIRECTIONAL'], "direction", self.name) self.activation = validator.check_string(activation, ['tanh'], "activation", self.name) self.gate_order = validator.check_string(gate_order, ['zrh', 'rzh'], "gate_order", self.name) self.reset_after = validator.check_value_type("reset_after", reset_after, [bool], self.name) def infer_shape(self, x_shape, winput_shape, whidden_shape, binput_shape, bhidden_shape, seq_shape, h_shape): validator.check_int(len(x_shape), 3, Rel.EQ, "x shape", self.name) validator.check_int(len(winput_shape), 2, Rel.EQ, "weight input shape rank", self.name) validator.check_int(len(whidden_shape), 2, Rel.EQ, "weight hidden shape rank", self.name) num_step, batch_size, input_size = x_shape hidden_size = winput_shape[-1] // 3 if winput_shape[-1] % 3 != 0: raise ValueError(f"For '{self.name}', the last dimension of 'w' should be a multiple of 3, " f"but got {winput_shape[-1]}.") self.placeholder_index = [3, 4, 5] if binput_shape is not None: validator.check_int(len(binput_shape), 1, Rel.EQ, "bias input shape rank", self.name) validator.check("bias_input_shape", binput_shape, "3 * hidden_shape", [3 * hidden_size], Rel.EQ, self.name) self.placeholder_index.remove(3) if bhidden_shape is not None: validator.check_int(len(bhidden_shape), 1, Rel.EQ, "bias hidden shape rank", self.name) validator.check("bias_hidden_shape", bhidden_shape, "3 * hidden_shape", [3 * hidden_size], Rel.EQ, self.name) self.placeholder_index.remove(4) if seq_shape is not None: raise ValueError(f"For '{self.name}', the dimension of 'seq_length' should be None, " f"but got {seq_shape}.") validator.check_int(len(h_shape), 2, Rel.EQ, "init_h shape rank", self.name) validator.check("init_h_shape[0]", h_shape[0], "batch_size", batch_size, Rel.EQ, self.name) validator.check("init_h_shape[1]", h_shape[1], "hidden_size", hidden_size, Rel.EQ, self.name) validator.check("weight_input_shape[-1]", winput_shape[-1], "weight_hidden_shape[-1]", whidden_shape[-1], Rel.EQ, self.name) validator.check("weight_input_shape[0]", winput_shape[0], "input_size", input_size, Rel.EQ, self.name) validator.check("weight_hidden_shape[0]", whidden_shape[0], "hidden_size", hidden_size, Rel.EQ, self.name) if self.num_proj > 0: y_shape = (num_step, batch_size, min(hidden_size, self.num_proj)) else: y_shape = (num_step, batch_size, hidden_size) out_shape = (num_step, batch_size, hidden_size) self.add_prim_attr("placeholder_index", self.placeholder_index) return y_shape, out_shape, out_shape, out_shape, out_shape, out_shape def infer_dtype(self, x_dtype, winput_dtype, whidden_dtype, binput_dtype, bhidden_dtype, seq_dtype, h_dtype): validator.check_tensor_dtype_valid("x dtype", x_dtype, [mstype.float16], self.name) validator.check_tensor_dtype_valid("weight input dtype", winput_dtype, [mstype.float16], self.name) validator.check_tensor_dtype_valid("weight hidden dtype", whidden_dtype, [mstype.float16], self.name) valid_dtypes = [mstype.float16, mstype.float32] validator.check_tensor_dtype_valid("init_h dtype", h_dtype, valid_dtypes, self.name) b_dtype = h_dtype if binput_dtype is not None: args = {'init_h': h_dtype, 'bias_input': binput_dtype} validator.check_tensors_dtypes_same_and_valid(args, valid_dtypes, self.name) b_dtype = binput_dtype if bhidden_dtype is not None: args = {'init_h': h_dtype, 'bias_hidden': bhidden_dtype} validator.check_tensors_dtypes_same_and_valid(args, valid_dtypes, self.name) b_dtype = bhidden_dtype return b_dtype, b_dtype, b_dtype, b_dtype, b_dtype, b_dtype
[docs]class InTopK(PrimitiveWithInfer): r""" Determines whether the targets are in the top `k` predictions. Args: k (int): Specifies the number of top elements to be used for computing precision. Inputs: - **x1** (Tensor) - A 2D Tensor defines the predictions of a batch of samples with float16 or float32 data type. - **x2** (Tensor) - A 1D Tensor defines the labels of a batch of samples with int32 data type. The size of x2 must be equal to x1's first dimension. The values of `x2` can not be negative and must be equal to or less than index of x1's second dimension. Outputs: Tensor has 1 dimension of type bool and the same shape with `x2`. For labeling sample `i` in `x2`, if the label in the first `k` predictions for sample `i` is in `x1`, then the value is True, otherwise False. Raises: TypeError: If `k` is not an int. TypeError: If `x1` or `x2` is not a Tensor. TypeError: If dtype of `x1` is neither float16 nor float32. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> x1 = Tensor(np.array([[1, 8, 5, 2, 7], [4, 9, 1, 3, 5]]), mindspore.float32) >>> x2 = Tensor(np.array([1, 3]), mindspore.int32) >>> in_top_k = ops.InTopK(3) >>> output = in_top_k(x1, x2) >>> print(output) [ True False] """ @prim_attr_register def __init__(self, k): """Initialize InTopK""" self.init_prim_io_names(inputs=['x1', 'x2', 'k'], outputs=['y']) validator.check_value_type("k", k, [int], self.name) def infer_dtype(self, x1_dtype, x2_dtype): validator.check_tensor_dtype_valid("x1", x1_dtype, (mstype.float16, mstype.float32,), self.name) validator.check_tensor_dtype_valid("x2", x2_dtype, (mstype.int32,), self.name) return mstype.tensor_type(mstype.bool_) def infer_shape(self, x1_shape, x2_shape): validator.check("x1 shape", len(x1_shape), "", 2, Rel.EQ, self.name) validator.check("x2 shape", len(x2_shape), "", 1, Rel.EQ, self.name) validator.check("size of x2", x2_shape[0], "x1's first dimension", x1_shape[0], Rel.EQ, self.name) return x2_shape
[docs]class LRN(PrimitiveWithInfer): r""" Local Response Normalization. .. math:: b_{c} = a_{c}\left(k + \frac{\alpha}{n} \sum_{c'=\max(0, c-n/2)}^{\min(N-1,c+n/2)}a_{c'}^2\right)^{-\beta} where the :math:`a_{c}` indicates the specific value of the pixel corresponding to c in feature map; where the :math:`n/2` indicates the `depth_radius`; where the :math:`k` indicates the `bias`; where the :math:`\alpha` indicates the `alpha`; where the :math:`\beta` indicates the `beta`. Args: depth_radius (int): Half-width of the 1-D normalization window with the shape of 0-D. Default: 5. bias (float): An offset (usually positive to avoid dividing by 0). Default: 1.0. alpha (float): A scale factor, usually positive. Default: 1.0. beta (float): An exponent. Default: 0.5. norm_region (str): Specifies normalization region. Options: "ACROSS_CHANNELS". Default: "ACROSS_CHANNELS". Inputs: - **x** (Tensor) - A 4-D Tensor with float16 or float32 data type. Outputs: Tensor, with the same shape and data type as `x`. Raises: TypeError: If `depth_radius` is not an int. TypeError: If `bias`, `alpha` or `beta` is not a float. TypeError: If `norm_region` is not a str. TypeError: If `x` is not a Tensor. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> x = Tensor(np.array([[[[0.1], [0.2]], ... [[0.3], [0.4]]]]), mindspore.float32) >>> lrn = ops.LRN() >>> output = lrn(x) >>> print(output) [[[[0.09534626] [0.1825742 ]] [[0.2860388 ] [0.3651484 ]]]] """ @prim_attr_register def __init__(self, depth_radius=5, bias=1.0, alpha=1.0, beta=0.5, norm_region="ACROSS_CHANNELS"): """Initialize LRN""" self.init_prim_io_names(inputs=['x'], outputs=['y']) validator.check_value_type("depth_radius", depth_radius, [int], self.name) validator.check_value_type("bias", bias, [float], self.name) validator.check_value_type("alpha", alpha, [float], self.name) validator.check_value_type("beta", beta, [float], self.name) validator.check_value_type("norm_region", norm_region, [str], self.name) validator.check_string(norm_region, ['ACROSS_CHANNELS'], 'norm_region', self.name) validator.check_non_negative_int(depth_radius, "depth_radius", self.name) def infer_dtype(self, x_dtype): validator.check_tensor_dtype_valid("x", x_dtype, (mstype.float16, mstype.float32,), self.name) return x_dtype def infer_shape(self, x_shape): validator.check_int(len(x_shape), 4, Rel.EQ, "x_shape", self.name) return x_shape
[docs]class AvgPool3D(Primitive): r""" 3D Average pooling operation. Applies a 3D average pooling over an input Tensor which can be regarded as a composition of 3D input planes. Typically the input is of shape :math:`(N, C, D_{in}, H_{in}, W_{in})`, AvgPool3D outputs regional average in the :math:`(D_{in}, H_{in}, W_{in})`-dimension. Given kernel size :math:`ks = (d_{ker}, h_{ker}, w_{ker})` and stride :math:`s = (s_0, s_1, s_2)`, the operation is as follows. .. warning:: "kernel_size" is in the range [1, 255]. "strides" is in the range [1, 63]. .. math:: \text{output}(N_i, C_j, d, h, w) = \frac{1}{d_{ker} * h_{ker} * w_{ker}} \sum_{l=0}^{d_{ker}-1} \sum_{m=0}^{h_{ker}-1} \sum_{n=0}^{w_{ker}-1} \text{input}(N_i, C_j, s_0 \times d + l, s_1 \times h + m, s_2 \times w + n) Args: kernel_size (Union[int, tuple[int]]): The size of kernel used to take the average value, is an int number that represents depth, height and width are both kernel_size, or a tuple of three int numbers that represent depth, height and width respectively. Default: 1. strides (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents the depth, height and width of movement are both strides, or a tuple of three int numbers that represent depth, height and width of movement respectively. Default: 1. pad_mode (str): The optional value for pad mode, is "SAME", "VALID", "PAD". Default: "VALID". - same: Adopts the way of completion. The depth, height and width of the output will be the same as the input. The total number of padding will be calculated in depth, horizontal and vertical directions and evenly distributed to head and tail, top and bottom, left and right if possible. Otherwise, the last extra padding will be done from the tail, bottom and the right side. If this mode is set, `pad` must be 0. - valid: Adopts the way of discarding. The possible largest depth, height and width of output will be returned without padding. Extra pixels will be discarded. If this mode is set, `pad` must be 0. - pad: Implicit paddings on both sides of the input in depth, height, width. The number of `pad` will be padded to the input Tensor borders. `pad` must be greater than or equal to 0. pad (Union(int, tuple[int])): The pad value to be filled. Default: 0. If `pad` is an integer, the paddings of head, tail, top, bottom, left and right are the same, equal to pad. If `pad` is a tuple of six integers, the padding of head, tail, top, bottom, left and right equal to pad[0], pad[1], pad[2], pad[3], pad[4] and pad[5] correspondingly. ceil_mode (bool): If True, ceil instead of floor to compute the output shape. Default: False. count_include_pad (bool): If True, averaging calculation will include the zero-padding. Default: True. divisor_override (int): If specified, it will be used as divisor in the averaging calculation, otherwise kernel_size will be used. Default: 0. data_format (str) : The optional value for data format. Currently only support 'NCDHW'. Default: 'NCDHW'. Inputs: - **x** (Tensor) - Tensor of shape :math:`(N, C, D_{in}, H_{in}, W_{in})`. Currently support float16 and float32 data type. Outputs: Tensor, with shape :math:`(N, C, D_{out}, H_{out}, W_{out})`. Has the same data type with `x`. Raises: TypeError: If `kernel_size`, `strides` or `pad` is neither an int not a tuple. TypeError: If `ceil_mode` or `count_include_pad` is not a bool. TypeError: If `pad_mode` or `data_format` is not a string. TypeError: If `divisor_override` is not an int. ValueError: If numbers in `kernel_size` or `strides` are not positive. ValueError: If `kernel_size` or `strides` is a tuple whose length is not equal to 3. ValueError: If `pad_mode` is not one of 'same', 'valid' or 'pad'. ValueError: If `pad` is a tuple whose length is not equal to 6. ValueError: If element of `pad` is less than 0. ValueError: If `pad_mode` is not equal to 'pad' and `pad` is not equal to 0 or (0, 0, 0, 0, 0, 0). ValueError: If `data_format` is not 'NCDHW'. Supported Platforms: ``Ascend`` Examples: >>> x = Tensor(np.arange(1 * 2 * 2 * 2 * 3).reshape((1, 2, 2, 2, 3)), mindspore.float16) >>> avg_pool3d = ops.AvgPool3D(kernel_size=2, strides=1, pad_mode="valid") >>> output = avg_pool3d(x) >>> print(output) [[[[[ 5. 6.]]] [[[17. 18.]]]]] """ @prim_attr_register def __init__(self, kernel_size=1, strides=1, pad_mode="valid", pad=0, ceil_mode=False, count_include_pad=True, divisor_override=0, data_format="NCDHW"): """Initialize AvgPool3D""" self.init_prim_io_names(inputs=['input'], outputs=['output']) self.kernel_size = _check_3d_int_or_tuple('kernel_size', kernel_size, self.name) self.add_prim_attr('kernel_size', self.kernel_size) self.strides = _check_3d_int_or_tuple('strides', strides, self.name) validator.check_value_type('pad', pad, (int, tuple), self.name) self.add_prim_attr('strides', self.strides) if isinstance(pad, int): pad = (pad,) * 6 if len(pad) != 6: raise ValueError(f"For '{self.name}', attr 'pad' should be an positive int number or a tuple of " f"six positive int numbers, but got {self.pad}.") self.pad_list = pad self.add_prim_attr('pad_list', self.pad_list) validator.check_value_type('pad_mode', pad_mode, [str], self.name) self.pad_mode = validator.check_string(pad_mode.upper(), ['VALID', 'SAME', 'PAD'], 'pad_mode', self.name) self.add_prim_attr('pad_mode', self.pad_mode) if self.pad_mode != 'PAD' and pad != (0, 0, 0, 0, 0, 0): raise ValueError(f"For '{self.name}', the 'pad' must be zero or (0, 0, 0, 0, 0, 0) when 'pad_mode' " f"is not \"PAD\", but got 'pad' is {self.pad} and 'pad_mode' is {pad_mode}.") if self.pad_mode == 'PAD': for item in pad: validator.check_non_negative_int(item, 'pad or item of pad', self.name) self.ceil_mode = validator.check_value_type('ceil_mode', ceil_mode, bool, self.name) self.count_include_pad = validator.check_value_type('count_include_pad', count_include_pad, bool, self.name) self.divisor_override = validator.check_non_negative_int(divisor_override, 'divisor_override', self.name) self.format = validator.check_string(data_format, ['NCDHW'], 'format', self.name)
[docs]class Conv3D(PrimitiveWithInfer): r""" 3D convolution layer. Applies a 3D convolution over an input tensor which is typically of shape :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` and output shape :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`. Where :math:`N` is batch size, :math:`C` is channel number, :math:`D` is depth, :math:`H` is height, :math:`W` is width. the formula is defined as: .. math:: \operatorname{out}\left(N_{i}, C_{\text {out}_j}\right)=\operatorname{bias}\left(C_{\t