mindspore
MindSpore package.
- class mindspore.DatasetHelper(dataset, dataset_sink_mode=True, sink_size=- 1, epoch_num=1)[source]
Help function to use the MindData dataset.
According to different contexts, change the iterations of dataset and use the same iteration for loop in different contexts.
Note
The iteration of DatasetHelper will provide one epoch data.
- Parameters
dataset (DataSet) – The training dataset iterator.
dataset_sink_mode (bool) – If true use GetNext to fetch the data, or else feed the data from host. Default: True.
sink_size (int) – Control the amount of data in each sink. If sink_size=-1, sink the complete dataset for each epoch. If sink_size>0, sink sink_size data for each epoch. Default: -1.
epoch_num (int) – Control the number of epoch data to send. Default: 1.
Examples
>>> dataset_helper = DatasetHelper(dataset) >>> for inputs in dataset_helper: >>> outputs = network(*inputs)
- class mindspore.Model(network, loss_fn=None, optimizer=None, metrics=None, eval_network=None, eval_indexes=None, amp_level='O0', **kwargs)[source]
High-Level API for Training or Testing.
Model groups layers into an object with training and inference features.
- Parameters
network (Cell) – A training or testing network.
loss_fn (Cell) – Objective function, if loss_fn is None, the network should contain the logic of loss and grads calculation, and the logic of parallel if needed. Default: None.
optimizer (Cell) – Optimizer for updating the weights. Default: None.
metrics (Union[dict, set]) – A Dictionary or a set of metrics to be evaluated by the model during training and testing. eg: {‘accuracy’, ‘recall’}. Default: None.
eval_network (Cell) – Network for evaluation. If not defined, network and loss_fn would be wrapped as eval_network. Default: None.
eval_indexes (list) – When defining the eval_network, if eval_indexes is None, all outputs of the eval_network would be passed to metrics, otherwise eval_indexes must contain three elements, including the positions of loss value, predicted value and label. The loss value would be passed to the Loss metric, the predicted value and label would be passed to other metric. Default: None.
amp_level (str) –
Option for argument level in mindspore.amp.build_train_network, level for mixed precision training. Supports [O0, O2, O3]. Default: “O0”.
O0: Do not change.
O2: Cast network to float16, keep batchnorm run in float32, using dynamic loss scale.
O3: Cast network to float16, with additional property ‘keep_batchnorm_fp32=False’.
O2 is recommended on GPU, O3 is recommended on Ascend.
loss_scale_manager (Union[None, LossScaleManager]) – If it is None, the loss would not be scaled. Otherwise, scale the loss by LossScaleManager. It is a key argument. e.g. Use loss_scale_manager=None to set the value.
keep_batchnorm_fp32 (bool) – Keep Batchnorm running in float32. If it is set to true, the level setting before will be overwritten. Default: True.
Examples
>>> class Net(nn.Cell): >>> def __init__(self): >>> super(Net, self).__init__() >>> self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal') >>> self.bn = nn.BatchNorm2d(64) >>> self.relu = nn.ReLU() >>> self.flatten = nn.Flatten() >>> self.fc = nn.Dense(64*224*224, 12) # padding=0 >>> >>> def construct(self, x): >>> x = self.conv(x) >>> x = self.bn(x) >>> x = self.relu(x) >>> x = self.flatten(x) >>> out = self.fc(x) >>> return out >>> >>> net = Net() >>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) >>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9) >>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None) >>> dataset = get_dataset() >>> model.train(2, dataset)
- eval(valid_dataset, callbacks=None, dataset_sink_mode=True)[source]
Evaluation API where the iteration is controlled by python front-end.
Configure to pynative mode, the evaluation will be performed with dataset non-sink mode.
Note
CPU is not supported when dataset_sink_mode is true. If dataset_sink_mode is True, data will be sent to device. If device is Ascend, features of data will be transferred one by one. The limitation of data transmission per time is 256M.
- Parameters
- Returns
Dict, which returns the loss value and metrics values for the model in the test mode.
Examples
>>> dataset = get_dataset() >>> net = Net() >>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) >>> model = Model(net, loss_fn=loss, optimizer=None, metrics={'acc'}) >>> model.eval(dataset)
- init(train_dataset=None, valid_dataset=None)[source]
Initialize compute graphs and data graphs with the sink mode.
Note
Pre-init process only supports GRAPH_MODE and Ascend target currently.
- Parameters
train_dataset (Dataset) – A training dataset iterator. If train_dataset is defined, training graphs will be initialized. Default: None.
valid_dataset (Dataset) – A evaluating dataset iterator. If valid_dataset is defined, evaluation graphs will be initialized, and metrics in Model can not be None. Default: None.
Examples
>>> train_dataset = get_train_dataset() >>> valid_dataset = get_valid_dataset() >>> net = Net() >>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) >>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9) >>> model = Model(net, loss_fn=loss, optimizer=optim, metrics={'acc'}) >>> model.init(train_dataset, valid_dataset) >>> model.train(2, train_dataset) >>> model.eval(valid_dataset)
- predict(*predict_data)[source]
Generate output predictions for the input samples.
Data could be a single tensor, a list of tensor, or a tuple of tensor.
Note
Batch data should be put together in one tensor.
- Parameters
predict_data (Tensor) – Tensor of predict data. can be array, list or tuple.
- Returns
Tensor, array(s) of predictions.
Examples
>>> input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]), mindspore.float32) >>> model = Model(Net()) >>> model.predict(input_data)
- train(epoch, train_dataset, callbacks=None, dataset_sink_mode=True, sink_size=- 1)[source]
Training API where the iteration is controlled by python front-end.
When setting pynative mode, the training process will be performed with dataset not sink.
Note
CPU is not supported when dataset_sink_mode is true. If dataset_sink_mode is True, epoch of training should be equal to the count of repeat operation in dataset processing. Otherwise, errors could occur since the amount of data is not equal to the required amount of training . If dataset_sink_mode is True, data will be sent to device. If device is Ascend, features of data will be transferred one by one. The limitation of data transmission per time is 256M. If sink_size > 0, each epoch the dataset can be traversed unlimited times until you get sink_size elements of the dataset. Next epoch continues to traverse from the end position of the previous traversal.
- Parameters
epoch (int) – Generally, total number of iterations on the data per epoch. When dataset_sink_mode is set to true and sink_size>0, each epoch sink sink_size steps on the data instead of total number of iterations.
train_dataset (Dataset) – A training dataset iterator. If there is no loss_fn, a tuple with multiple data (data1, data2, data3, …) should be returned and passed to the network. Otherwise, a tuple (data, label) should be returned. The data and label would be passed to the network and loss function respectively.
callbacks (list) – List of callback objects which should be executed while training. Default: None.
dataset_sink_mode (bool) – Determines whether to pass the data through dataset channel. Default: True. Configure pynative mode, the training process will be performed with dataset not sink.
sink_size (int) – Control the amount of data in each sink. If sink_size = -1, sink the complete dataset for each epoch. If sink_size > 0, sink sink_size data for each epoch. If dataset_sink_mode is False, set sink_size as invalid. Default: -1.
Examples
>>> dataset = get_dataset() >>> net = Net() >>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) >>> loss_scale_manager = FixedLossScaleManager() >>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9) >>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None, loss_scale_manager=loss_scale_manager) >>> model.train(2, dataset)
- class mindspore.ParallelMode[source]
Parallel mode options.
There are five kinds of parallel modes, “STAND_ALONE”, “DATA_PARALLEL”, “HYBRID_PARALLEL”, “SEMI_AUTO_PARALLEL” and “AUTO_PARALLEL”. Default: “STAND_ALONE”.
STAND_ALONE: Only one processor working.
DATA_PARALLEL: Distributing the data across different processors.
HYBRID_PARALLEL: Achieving data parallelism and model parallelism manually.
SEMI_AUTO_PARALLEL: Achieving data parallelism and model parallelism by setting parallel strategies.
AUTO_PARALLEL: Achieving parallelism automatically.
MODE_LIST: The list for all supported parallel modes.
- class mindspore.Parameter(default_input, name, *args, **kwargs)[source]
Parameter types of cell models.
After initialized Parameter is a subtype of Tensor.
In auto_parallel mode of “semi_auto_parallel” and “auto_parallel”, if init Parameter by an Initializer, the type of Parameter will be MetaTensor not Tensor. MetaTensor only saves the shape and type info of a tensor with no memory usage. The shape can be changed while compile for auto-parallel. Call init_data will return a Tensor Parameter with initialized data.
Note
Each parameter of Cell is represented by Parameter class.
- Parameters
default_input (Union[Tensor, Initializer, Number]) – Parameter data, to be set initialized.
name (str) – Name of the child parameter.
requires_grad (bool) – True if the parameter requires gradient. Default: True.
layerwise_parallel (bool) – A kind of model parallel mode. When layerwise_parallel is true in parallel mode, broadcast and gradients communication would not be applied to parameters. Default: False.
Example
>>> from mindspore import Parameter, Tensor >>> from mindspore.common import initializer as init >>> from mindspore.ops import operations as P >>> from mindspore.nn import Cell >>> import mindspore >>> import numpy as np >>> from mindspore import context >>> >>> class Net(Cell): >>> def __init__(self): >>> super(Net, self).__init__() >>> self.matmul = P.MatMul() >>> self.weight = Parameter(Tensor(np.ones((1,2))), name="w", requires_grad=True) >>> >>> def construct(self, x): >>> out = self.matmul(self.weight, x) >>> return out >>> context.set_context(mode=context.GRAPH_MODE, device_target="CPU") >>> net = Net() >>> x = Tensor(np.ones((2,1))) >>> net(x) [[2.]] >>> net.weight.set_parameter_data(Tensor(np.zeros((1,2)))) >>> net(x) [[0.]]
- clone(prefix, init='same')[source]
Clone the parameter.
- Parameters
prefix (str) – Namespace of parameter.
init (Union[Tensor, str, Initializer, numbers.Number]) – Initialize the shape of the parameter. Default: ‘same’.
- Returns
Parameter, a new parameter.
- init_data(layout=None, set_sliced=False)[source]
Initialize the parameter data.
- Parameters
- Raises
RuntimeError – If it is from Initializer, and parallel mode has changed after the Initializer created.
- Returns
Parameter, the Parameter after initializing data. If current Parameter was already initialized before, returns the same initialized Parameter.
- property inited_param
Get the new parameter after call the init_data.
- property is_init
Get the initialization status of the parameter.
- property name
Get the name of the parameter.
- property requires_grad
Return whether the parameter requires gradient.
- set_parameter_data(data, slice_shape=False)[source]
Set default_input of current Parameter.
- Parameters
data (Union[Tensor, Initializer, int, float]) – new data.
slice_shape (bool) – If slice the Parameter, will not check if shape is match. Default: False.
- Retruns:
Parameter, the parameter after set data.
- property sliced
Get slice status of the parameter.
- class mindspore.ParameterTuple(iterable)[source]
Class for storing tuple of parameters.
Note
It is used to store the parameters of the network into the parameter tuple collection.
- class mindspore.RowTensor(indices, values, dense_shape)[source]
A sparse representation of a set of tensor slices at given indices.
An RowTensor is typically used to represent a subset of a larger tensor dense of shape [L0, D1, .. , DN] where L0 >> D0.
The values in indices are the indices in the first dimension of the slices that have been extracted from the larger tensor.
The dense tensor dense represented by an RowTensor slices has dense[slices.indices[i], :, :, :, …] = slices.values[i, :, :, :, …].
RowTensor can only be used in the Cell’s contruct method.
It is not supported in pynative mode at the moment.
- Parameters
- Returns
RowTensor, composed of indices, values, and dense_shape.
Examples
>>> class Net(nn.Cell): >>> def __init__(self, dense_shape): >>> super(Net, self).__init__() >>> self.dense_shape = dense_shape >>> def construct(self, indices, values): >>> x = RowTensor(indices, values, self.dense_shape) >>> return x.values, x.indices, x.dense_shape >>> >>> indices = Tensor([0]) >>> values = Tensor([[1, 2]], dtype=ms.float32) >>> Net((3, 2))(indices, values)
- class mindspore.SparseTensor(indices, values, dense_shape)[source]
A sparse representation of a set of nonzero elememts from a tensor at given indices.
SparseTensor can only be used in the Cell’s construct method.
Pynative mode not supported at the moment.
For a tensor dense, its SparseTensor(indices, values, dense_shape) has dense[indices[i]] = values[i].
- Parameters
indices (Tensor) – A 2-D integer Tensor of shape [N, ndims], where N and ndims are the number of values and number of dimensions in the SparseTensor, respectively.
values (Tensor) – A 1-D tensor of any type and shape [N], which supplies the values for each element in indices.
dense_shape (tuple) – A integer tuple of size ndims, which specifies the dense_shape of the sparse tensor.
- Returns
SparseTensor, composed of indices, values, and dense_shape.
Examples
>>> class Net(nn.Cell): >>> def __init__(self, dense_shape): >>> super(Net, self).__init__() >>> self.dense_shape = dense_shape >>> def construct(self, indices, values): >>> x = SparseTensor(indices, values, self.dense_shape) >>> return x.values, x.indices, x.dense_shape >>> >>> indices = Tensor([[0, 1], [1, 2]]) >>> values = Tensor([1, 2], dtype=ms.float32) >>> Net((3, 4))(indices, values)
- class mindspore.Tensor(input_data, dtype=None)[source]
Tensor is used for data storage.
Tensor inherits tensor object in C++. Some functions are implemented in C++ and some functions are implemented in Python.
- Parameters
input_data (Tensor, float, int, bool, tuple, list, numpy.ndarray) – Input data of the tensor.
dtype (
mindspore.dtype
) – Input data should be None, bool or numeric type defined in mindspore.dtype. The argument is used to define the data type of the output tensor. If it is None, the data type of the output tensor will be as same as the input_data. Default: None.
- Outputs:
Tensor, with the same shape as input_data.
Examples
>>> # initialize a tensor with input data >>> t1 = Tensor(np.zeros([1, 2, 3]), mindspore.float32) >>> assert isinstance(t1, Tensor) >>> assert t1.shape == (1, 2, 3) >>> assert t1.dtype == mindspore.float32 >>> >>> # initialize a tensor with a float scalar >>> t2 = Tensor(0.1) >>> assert isinstance(t2, Tensor) >>> assert t2.dtype == mindspore.float64
- all(axis=(), keep_dims=False)[source]
Check all array elements along a given axis evaluate to True.
- Parameters
- Returns
Tensor, has the same data type as x.
- any(axis=(), keep_dims=False)[source]
Check any array element along a given axis evaluate to True.
- Parameters
- Returns
Tensor, has the same data type as x.
- property dtype
The dtype of tensor is a mindspore type.
- property shape
The shape of tensor is a tuple.
- property virtual_flag
Mark tensor is virtual.
- mindspore.dtype_to_nptype(type_)[source]
Convert MindSpore dtype to numpy data type.
- Parameters
type (
mindspore.dtype
) – MindSpore’s dtype.- Returns
The data type of numpy.
- mindspore.dtype_to_pytype(type_)[source]
Convert MindSpore dtype to python data type.
- Parameters
type (
mindspore.dtype
) – MindSpore’s dtype.- Returns
Type of python.
- mindspore.get_level()[source]
Get the logger level.
- Returns
str, the Log level includes 3(ERROR), 2(WARNING), 1(INFO), 0(DEBUG).
Examples
>>> import os >>> os.environ['GLOG_v'] = '0' >>> from mindspore import log as logger >>> logger.get_level()
- mindspore.get_log_config()[source]
Get logger configurations.
- Returns
Dict, the dictionary of logger configurations.
Examples
>>> import os >>> os.environ['GLOG_v'] = '1' >>> os.environ['GLOG_logtostderr'] = '0' >>> os.environ['GLOG_log_dir'] = '/var/log/mindspore' >>> os.environ['logger_maxBytes'] = '5242880' >>> os.environ['logger_backupCount'] = '10' >>> from mindspore import log as logger >>> logger.get_log_config()
- mindspore.get_py_obj_dtype(obj)[source]
Get the MindSpore data type which corresponds to python type or variable.
- Parameters
obj – An object of python type, or a variable in python type.
- Returns
Type of MindSpore type.
- mindspore.issubclass_(type_, dtype)[source]
Determine whether type_ is a subclass of dtype.
- Parameters
type (
mindspore.dtype
) – Target MindSpore dtype.dtype (
mindspore.dtype
) – Compare MindSpore dtype.
- Returns
bool, True or False.
- mindspore.ms_function(fn=None, obj=None, input_signature=None)[source]
Create a callable MindSpore graph from a python function.
This allows the MindSpore runtime to apply optimizations based on graph.
- Parameters
fn (Function) – The Python function that will be run as a graph. Default: None.
obj (Object) – The Python Object that provides the information for identifying the compiled function.Default: None.
input_signature (MetaTensor) – The MetaTensor which describes the input arguments. The MetaTensor specifies the shape and dtype of the Tensor and they will be supplied to this function. If input_signature is specified, each input to fn must be a Tensor. And the input parameters of fn cannot accept **kwargs. The shape and dtype of actual inputs should keep the same as input_signature. Otherwise, TypeError will be raised. Default: None.
- Returns
Function, if fn is not None, returns a callable function that will execute the compiled function; If fn is None, returns a decorator and when this decorator invokes with a single fn argument, the callable function is equal to the case when fn is not None.
Examples
>>> def tensor_add(x, y): >>> z = F.tensor_add(x, y) >>> return z >>> >>> @ms_function >>> def tensor_add_with_dec(x, y): >>> z = F.tensor_add(x, y) >>> return z >>> >>> @ms_function(input_signature=(MetaTensor(mindspore.float32, (1, 1, 3, 3)), >>> MetaTensor(mindspore.float32, (1, 1, 3, 3)))) >>> def tensor_add_with_sig(x, y): >>> z = F.tensor_add(x, y) >>> return z >>> >>> x = Tensor(np.ones([1, 1, 3, 3]).astype(np.float32)) >>> y = Tensor(np.ones([1, 1, 3, 3]).astype(np.float32)) >>> >>> tensor_add_graph = ms_function(fn=tensor_add) >>> out = tensor_add_graph(x, y) >>> out = tensor_add_with_dec(x, y) >>> out = tensor_add_with_sig(x, y)