Source code for mindspore.train.model

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Model."""
from collections.abc import Iterable

import os
import math
import numpy as np

from mindspore import log as logger
from ..common.tensor import Tensor
from ..nn.metrics import get_metrics
from .._checkparam import check_input_data, check_output_data, check_int_positive, check_bool, check_int
from .callback import _InternalCallbackParam, RunContext, _CallbackManager
from .. import context
from ..parallel._utils import _get_parallel_mode, _get_device_num, _get_global_rank, \
    _get_parameter_broadcast, _device_number_check, _parameter_broadcast_check
from ..nn.metrics import Loss
from .. import nn
from ..nn.wrap.cell_wrapper import _VirtualDatasetCell
from .parallel_utils import ParallelMode
from ..parallel._utils import _need_to_full, _to_full_tensor
from ..common import dtype as mstype
from .dataset_helper import DatasetHelper
from . import amp


def _transfer_tensor_to_tuple(inputs):
    """
    If the input is a tensor, convert it to a tuple. If not, the output is unchanged.
    """
    if isinstance(inputs, Tensor):
        return (inputs,)

    return inputs


[docs]class Model: """ High-Level API for Training or Testing. `Model` groups layers into an object with training and inference features. Args: network (Cell): A training or testing network. loss_fn (Cell): Objective function, if loss_fn is None, the network should contain the logic of loss and grads calculation, and the logic of parallel if needed. Default: None. optimizer (Cell): Optimizer for updating the weights. Default: None. metrics (Union[dict, set]): A Dictionary or a set of metrics to be evaluated by the model during training and testing. eg: {'accuracy', 'recall'}. Default: None. eval_network (Cell): Network for evaluation. If not defined, `network` and `loss_fn` would be wrapped as `eval_network`. Default: None. eval_indexes (list): When defining the `eval_network`, if `eval_indexes` is None, all outputs of the `eval_network` would be passed to metrics, otherwise `eval_indexes` must contain three elements, including the positions of loss value, predicted value and label. The loss value would be passed to the `Loss` metric, the predicted value and label would be passed to other metric. Default: None. amp_level (str): Option for argument `level` in `mindspore.amp.build_train_network`, level for mixed precision training. Supports [O0, O2, O3]. Default: "O0". - O0: Do not change. - O2: Cast network to float16, keep batchnorm run in float32, using dynamic loss scale. - O3: Cast network to float16, with additional property 'keep_batchnorm_fp32=False'. O2 is recommended on GPU, O3 is recommended on Ascend. loss_scale_manager (Union[None, LossScaleManager]): If it is None, the loss would not be scaled. Otherwise, scale the loss by LossScaleManager. It is a key argument. e.g. Use `loss_scale_manager=None` to set the value. keep_batchnorm_fp32 (bool): Keep Batchnorm running in `float32`. If it is set to true, the level setting before will be overwritten. Default: True. Examples: >>> class Net(nn.Cell): >>> def __init__(self): >>> super(Net, self).__init__() >>> self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal') >>> self.bn = nn.BatchNorm2d(64) >>> self.relu = nn.ReLU() >>> self.flatten = nn.Flatten() >>> self.fc = nn.Dense(64*224*224, 12) # padding=0 >>> >>> def construct(self, x): >>> x = self.conv(x) >>> x = self.bn(x) >>> x = self.relu(x) >>> x = self.flatten(x) >>> out = self.fc(x) >>> return out >>> >>> net = Net() >>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) >>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9) >>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None) >>> dataset = get_dataset() >>> model.train(2, dataset) """ def __init__(self, network, loss_fn=None, optimizer=None, metrics=None, eval_network=None, eval_indexes=None, amp_level="O0", **kwargs): self._network = network self._loss_fn = loss_fn self._optimizer = optimizer self._loss_scale_manager = None self._loss_scale_manager_set = False self._keep_bn_fp32 = True self._check_kwargs(kwargs) self._amp_level = amp_level self._process_amp_args(kwargs) self._parallel_mode = _get_parallel_mode() self._device_number = _get_device_num() self._global_rank = _get_global_rank() self._parameter_broadcast = _get_parameter_broadcast() self._train_network = self._build_train_network() self._build_eval_network(metrics, eval_network, eval_indexes) self._build_predict_network() def _process_amp_args(self, kwargs): if self._amp_level in ["O0", "O3"]: self._keep_bn_fp32 = False if 'keep_batchnorm_fp32' in kwargs: self._keep_bn_fp32 = kwargs['keep_batchnorm_fp32'] if 'loss_scale_manager' in kwargs: self._loss_scale_manager = kwargs['loss_scale_manager'] self._loss_scale_manager_set = True def _check_kwargs(self, kwargs): for arg in kwargs: if arg not in ['loss_scale_manager', 'keep_batchnorm_fp32']: raise ValueError(f"Unsupported arg '{arg}'") def _build_train_network(self): """Build train network""" network = self._network if self._optimizer: if self._loss_scale_manager_set: network = amp.build_train_network(network, self._optimizer, self._loss_fn, level=self._amp_level, loss_scale_manager=self._loss_scale_manager, keep_batchnorm_fp32=self._keep_bn_fp32) else: network = amp.build_train_network(network, self._optimizer, self._loss_fn, level=self._amp_level, keep_batchnorm_fp32=self._keep_bn_fp32) elif self._loss_fn: network = nn.WithLossCell(network, self._loss_fn) # If need to check if loss_fn is not None, but optimizer is None if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL): network.set_auto_parallel() return network def _build_eval_network(self, metrics, eval_network, eval_indexes): """Build the network for evaluation.""" self._metric_fns = get_metrics(metrics) if not self._metric_fns: return if eval_network is not None: if eval_indexes is not None and not (isinstance(eval_indexes, list) and len(eval_indexes) == 3): raise ValueError("Eval_indexes must be a list or None. If eval_indexes is a list, length of it \ must be three. But got {}".format(eval_indexes)) self._eval_network = eval_network self._eval_indexes = eval_indexes else: if self._loss_fn is None: raise ValueError("loss_fn can not be None.") self._eval_network = nn.WithEvalCell(self._network, self._loss_fn, self._amp_level in ["O2", "O3"]) self._eval_indexes = [0, 1, 2] if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL): if self._optimizer: self._eval_network = _VirtualDatasetCell(self._eval_network) self._eval_network.set_auto_parallel() def _build_predict_network(self): """Build the network for prediction.""" self._predict_network = self._network if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL): self._predict_network = _VirtualDatasetCell(self._network) self._predict_network.set_auto_parallel() def _clear_metrics(self): """Clear metrics local values.""" for metric in self._metric_fns.values(): metric.clear() def _update_metrics(self, outputs): """Update metrics local values.""" if not isinstance(outputs, tuple): raise ValueError("The `outputs` is not tuple.") if self._eval_indexes is not None and len(outputs) < 3: raise ValueError("The length of `outputs` must be greater than or equal to 3, \ but got {}".format(len(outputs))) for metric in self._metric_fns.values(): if self._eval_indexes is None: metric.update(*outputs) else: if isinstance(metric, Loss): metric.update(outputs[self._eval_indexes[0]]) else: metric.update(outputs[self._eval_indexes[1]], outputs[self._eval_indexes[2]]) def _get_metrics(self): """Get metrics local values.""" metrics = dict() for key, value in self._metric_fns.items(): metrics[key] = value.eval() return metrics def _get_scaling_sens(self): """get the scaling sens""" scaling_sens = 1 if self._loss_scale_manager is not None: scaling_sens = self._loss_scale_manager.get_loss_scale() if self._parallel_mode == ParallelMode.DATA_PARALLEL: scaling_sens /= self._device_number return scaling_sens def _exec_preprocess(self, network, is_train, phase, dataset, dataset_sink_mode, sink_size=-1, epoch_num=1): """Initializes dataset.""" need_wrap = False if dataset_sink_mode: # remove later to deal with loop sink if not hasattr(dataset, '__ME_INITED__') and context.get_context("device_target") == "Ascend" \ and not context.get_context("enable_ge"): need_wrap = True if not is_train: dataset.__loop_size__ = 1 dataset_helper = DatasetHelper(dataset, dataset_sink_mode, sink_size, epoch_num) # remove later to deal with loop sink if need_wrap: network = nn.DataWrapper(network, *(dataset_helper.types_shapes()), dataset.__ME_INITED__) network.set_train(is_train) network.phase = phase if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL): network.set_auto_parallel() return dataset_helper, network
[docs] def init(self, train_dataset=None, valid_dataset=None): """ Initialize compute graphs and data graphs with the sink mode. Note: Pre-init process only supports `GRAPH_MODE` and `Ascend` target currently. Args: train_dataset (Dataset): A training dataset iterator. If `train_dataset` is defined, training graphs will be initialized. Default: None. valid_dataset (Dataset): A evaluating dataset iterator. If `valid_dataset` is defined, evaluation graphs will be initialized, and `metrics` in `Model` can not be None. Default: None. Examples: >>> train_dataset = get_train_dataset() >>> valid_dataset = get_valid_dataset() >>> net = Net() >>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) >>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9) >>> model = Model(net, loss_fn=loss, optimizer=optim, metrics={'acc'}) >>> model.init(train_dataset, valid_dataset) >>> model.train(2, train_dataset) >>> model.eval(valid_dataset) """ if context.get_context("mode") != context.GRAPH_MODE or context.get_context("device_target") != "Ascend": raise RuntimeError('Pre-init process only supports GRAPH MODE and Ascend target currently.') if not train_dataset and not valid_dataset: raise ValueError('Both train_dataset and valid_dataset can not be None or empty.') _device_number_check(self._parallel_mode, self._device_number) if train_dataset: _parameter_broadcast_check(self._parallel_mode, self._parameter_broadcast) self._train_network.set_train() self._train_network.phase = 'train' if self._parameter_broadcast: self._train_network.set_broadcast_flag() train_dataset.__no_send__ = True train_dataset_helper, train_network = self._exec_preprocess(self._train_network, is_train=True, phase='train', dataset=train_dataset, dataset_sink_mode=True) self._train_network = train_network for inputs in train_dataset_helper: self._train_network.compile(*inputs) break if valid_dataset: if not self._metric_fns: raise RuntimeError('If define `valid_dataset`, metric fn can not be None or empty.') self._eval_network.set_train(False) self._eval_network.phase = 'eval' valid_dataset.__no_send__ = True valid_dataset_helper, eval_network = self._exec_preprocess(self._eval_network, is_train=False, phase='eval', dataset=valid_dataset, dataset_sink_mode=True) self._eval_network = eval_network for inputs in valid_dataset_helper: self._eval_network.compile(*inputs) break
def _train(self, epoch, train_dataset, callbacks=None, dataset_sink_mode=True, sink_size=-1): """ Training. Args: epoch (int): Total number of iterations on the data. train_dataset (Dataset): A training dataset iterator. If there is no loss_fn, a tuple with multiple data (data1, data2, data3, ...) will be returned and passed to the network. Otherwise, a tuple (data, label) will be returned. The data and label would be passed to the network and loss function respectively. callbacks (list): List of callback objects which should be executed while training. Default: None. dataset_sink_mode (bool): Determine whether the data should be passed through the dataset channel. Default: True. Configure pynative mode, the training process will be performed with dataset not sink. sink_size (int): Control the amount of data in each sink. Default: -1. """ epoch = check_int_positive(epoch) self._train_network.set_train() if self._parameter_broadcast: self._train_network.set_broadcast_flag() cb_params = _InternalCallbackParam() cb_params.train_network = self._train_network cb_params.epoch_num = epoch if dataset_sink_mode and sink_size > 0: cb_params.batch_num = sink_size else: cb_params.batch_num = train_dataset.get_dataset_size() cb_params.mode = "train" cb_params.loss_fn = self._loss_fn cb_params.optimizer = self._optimizer cb_params.parallel_mode = self._parallel_mode cb_params.device_number = self._device_number cb_params.train_dataset = train_dataset cb_params.list_callback = self._transform_callbacks(callbacks) cb_params.train_dataset_element = None cb_params.network = self._network ms_role = os.getenv("MS_ROLE") if ms_role in ("MS_PSERVER", "MS_SCHED"): epoch = 1 # build callback list with _CallbackManager(callbacks) as list_callback: if not dataset_sink_mode: self._train_process(epoch, train_dataset, list_callback, cb_params) elif context.get_context("mode") == context.PYNATIVE_MODE: logger.warning("The pynative mode cannot support dataset sink mode currently." "So the training process will be performed with dataset not sink.") self._train_process(epoch, train_dataset, list_callback, cb_params) else: self._train_dataset_sink_process(epoch, train_dataset, list_callback, cb_params, sink_size) @staticmethod def _transform_callbacks(callbacks): """Transform callback to a list.""" if callbacks is None: return [] if isinstance(callbacks, Iterable): return list(callbacks) return [callbacks] def _train_dataset_sink_process(self, epoch, train_dataset, list_callback=None, cb_params=None, sink_size=-1): """ Training process. The data would be passed to network through dataset channel. Args: epoch (int): Total number of iterations on the data. train_dataset (Dataset): A training dataset iterator. If there is no loss_fn, a tuple with multiple data (data1, data2, data3, ...) should be returned and passed to the network. Otherwise, a tuple (data, label) should be returned. The data and label would be passed to the network and loss function respectively. list_callback (Callback): Executor of callback list. Default: None. cb_params (_InternalCallbackParam): Callback parameters. Default: None. sink_size (int): Control the amount of data in each sink. Default: -1. """ if sink_size == -1: epoch_num = epoch else: epoch_num = math.ceil(epoch * sink_size / train_dataset.get_dataset_size()) dataset_helper, train_network = self._exec_preprocess(self._train_network, is_train=True, phase='train', dataset=train_dataset, dataset_sink_mode=True, sink_size=sink_size, epoch_num=epoch_num) self._train_network = train_network cb_params.train_network = self._train_network cb_params.cur_step_num = 0 run_context = RunContext(cb_params) list_callback.begin(run_context) # used to stop training for early stop, such as stopAtTIme or stopATStep should_stop = False for i in range(epoch): cb_params.cur_epoch_num = i + 1 list_callback.epoch_begin(run_context) # for data sink dataset_helper only iter once, other wise iter epoch_size times. for inputs in dataset_helper: if _need_to_full() and context.get_context("device_target") == "GPU": inputs = _to_full_tensor(inputs, self._device_number, self._global_rank) list_callback.step_begin(run_context) outputs = self._train_network(*inputs) cb_params.cur_step_num += dataset_helper.sink_size() cb_params.net_outputs = outputs list_callback.step_end(run_context) list_callback.epoch_end(run_context) should_stop = should_stop or run_context.get_stop_requested() if should_stop: break dataset_helper.stop_send() list_callback.end(run_context) def _train_process(self, epoch, train_dataset, list_callback=None, cb_params=None): """ Training process. The data would be passed to network directly. Args: epoch (int): Total number of iterations on the data. train_dataset (Dataset): A training dataset iterator. If there is no loss_fn, a tuple with multiple data (data1, data2, data3, ...) should be returned and passed to the network. Otherwise, a tuple (data, label) should be returned. The data and label would be passed to the network and loss function respectively. list_callback (Callback): Executor of callback list. Default: None. cb_params (_InternalCallbackParam): Callback parameters. Default: None. """ dataset_helper, _ = self._exec_preprocess(self._train_network, is_train=True, phase='train', dataset=train_dataset, dataset_sink_mode=False) cb_params.cur_step_num = 0 run_context = RunContext(cb_params) list_callback.begin(run_context) # used to stop training for early stop, such as stopAtTIme or stopATStep should_stop = False for i in range(epoch): cb_params.cur_epoch_num = i + 1 list_callback.epoch_begin(run_context) for next_element in dataset_helper: next_element = _transfer_tensor_to_tuple(next_element) len_element = len(next_element) if self._loss_fn and len_element != 2: raise ValueError("when loss_fn is not None, train_dataset should" "return two elements, but got {}".format(len_element)) cb_params.cur_step_num += 1 list_callback.step_begin(run_context) overflow = False if self._loss_scale_manager and self._loss_scale_manager.get_drop_overflow_update(): scaling_sens = self._get_scaling_sens() next_element = tuple(next_element) + (Tensor(scaling_sens, mstype.float32),) cb_params.train_dataset_element = next_element outputs = self._train_network(*next_element) cb_params.net_outputs = outputs if self._loss_scale_manager and self._loss_scale_manager.get_drop_overflow_update(): _, overflow, _ = outputs overflow = np.all(overflow.asnumpy()) self._loss_scale_manager.update_loss_scale(overflow) list_callback.step_end(run_context) if os.getenv("MS_ROLE") == "MS_PSERVER": os._exit(0) should_stop = should_stop or run_context.get_stop_requested() if should_stop: break train_dataset.reset() list_callback.epoch_end(run_context) should_stop = should_stop or run_context.get_stop_requested() if should_stop: break list_callback.end(run_context)
[docs] def train(self, epoch, train_dataset, callbacks=None, dataset_sink_mode=True, sink_size=-1): """ Training API where the iteration is controlled by python front-end. When setting pynative mode, the training process will be performed with dataset not sink. Note: CPU is not supported when dataset_sink_mode is true. If dataset_sink_mode is True, epoch of training should be equal to the count of repeat operation in dataset processing. Otherwise, errors could occur since the amount of data is not equal to the required amount of training . If dataset_sink_mode is True, data will be sent to device. If device is Ascend, features of data will be transferred one by one. The limitation of data transmission per time is 256M. If sink_size > 0, each epoch the dataset can be traversed unlimited times until you get sink_size elements of the dataset. Next epoch continues to traverse from the end position of the previous traversal. Args: epoch (int): Generally, total number of iterations on the data per epoch. When dataset_sink_mode is set to true and sink_size>0, each epoch sink sink_size steps on the data instead of total number of iterations. train_dataset (Dataset): A training dataset iterator. If there is no loss_fn, a tuple with multiple data (data1, data2, data3, ...) should be returned and passed to the network. Otherwise, a tuple (data, label) should be returned. The data and label would be passed to the network and loss function respectively. callbacks (list): List of callback objects which should be executed while training. Default: None. dataset_sink_mode (bool): Determines whether to pass the data through dataset channel. Default: True. Configure pynative mode, the training process will be performed with dataset not sink. sink_size (int): Control the amount of data in each sink. If sink_size = -1, sink the complete dataset for each epoch. If sink_size > 0, sink sink_size data for each epoch. If dataset_sink_mode is False, set sink_size as invalid. Default: -1. Examples: >>> dataset = get_dataset() >>> net = Net() >>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) >>> loss_scale_manager = FixedLossScaleManager() >>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9) >>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None, loss_scale_manager=loss_scale_manager) >>> model.train(2, dataset) """ check_bool(dataset_sink_mode) check_int(sink_size) if sink_size < -1 or sink_size == 0: raise ValueError("The sink_size must be -1 or positive, but got sink_size {}.".format(sink_size)) _device_number_check(self._parallel_mode, self._device_number) _parameter_broadcast_check(self._parallel_mode, self._parameter_broadcast) self._train(epoch, train_dataset, callbacks=callbacks, dataset_sink_mode=dataset_sink_mode, sink_size=sink_size)
def _eval_dataset_sink_process(self, valid_dataset, list_callback=None, cb_params=None): """ Evaluation. The data would be passed to network through dataset channel. Args: valid_dataset (Dataset): Dataset to evaluate the model. list_callback (Callback): Executor of callback list. Default: None. cb_params (_InternalCallbackParam): Callback parameters. Default: None. Returns: Dict, which returns the loss value and metrics values for the model in the test mode. """ run_context = RunContext(cb_params) dataset_helper, eval_network = self._exec_preprocess(self._eval_network, is_train=False, phase='eval', dataset=valid_dataset, dataset_sink_mode=True) self._eval_network = eval_network cb_params.eval_network = self._eval_network list_callback.begin(run_context) for inputs in dataset_helper: cb_params.cur_step_num += 1 list_callback.step_begin(run_context) outputs = self._eval_network(*inputs) cb_params.net_outputs = outputs list_callback.step_end(run_context) self._update_metrics(outputs) metrics = self._get_metrics() cb_params.metrics = metrics list_callback.end(run_context) return metrics def _eval_process(self, valid_dataset, list_callback=None, cb_params=None): """ Evaluation. The data would be passed to network directly. Args: valid_dataset (Dataset): Dataset to evaluate the model. list_callback (Callback): Executor of callback list. Default: None. cb_params (_InternalCallbackParam): Callback parameters. Default: None. Returns: Dict, which returns the loss value and metrics values for the model in the test mode. """ run_context = RunContext(cb_params) list_callback.begin(run_context) dataset_helper, _ = self._exec_preprocess(self._eval_network, is_train=False, phase='eval', dataset=valid_dataset, dataset_sink_mode=False) for next_element in dataset_helper: cb_params.cur_step_num += 1 list_callback.step_begin(run_context) next_element = _transfer_tensor_to_tuple(next_element) outputs = self._eval_network(*next_element) cb_params.net_outputs = outputs list_callback.step_end(run_context) self._update_metrics(outputs) valid_dataset.reset() metrics = self._get_metrics() cb_params.metrics = metrics list_callback.end(run_context) return metrics
[docs] def eval(self, valid_dataset, callbacks=None, dataset_sink_mode=True): """ Evaluation API where the iteration is controlled by python front-end. Configure to pynative mode, the evaluation will be performed with dataset non-sink mode. Note: CPU is not supported when dataset_sink_mode is true. If dataset_sink_mode is True, data will be sent to device. If device is Ascend, features of data will be transferred one by one. The limitation of data transmission per time is 256M. Args: valid_dataset (Dataset): Dataset to evaluate the model. callbacks (list): List of callback objects which should be executed while training. Default: None. dataset_sink_mode (bool): Determines whether to pass the data through dataset channel. Default: True. Returns: Dict, which returns the loss value and metrics values for the model in the test mode. Examples: >>> dataset = get_dataset() >>> net = Net() >>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) >>> model = Model(net, loss_fn=loss, optimizer=None, metrics={'acc'}) >>> model.eval(dataset) """ check_bool(dataset_sink_mode) _device_number_check(self._parallel_mode, self._device_number) if not self._metric_fns: raise ValueError("metric fn can not be None or empty.") cb_params = _InternalCallbackParam() cb_params.eval_network = self._eval_network cb_params.valid_dataset = valid_dataset cb_params.batch_num = valid_dataset.get_dataset_size() cb_params.mode = "eval" cb_params.cur_step_num = 0 cb_params.list_callback = self._transform_callbacks(callbacks) cb_params.network = self._network self._eval_network.set_train(mode=False) self._eval_network.phase = 'eval' self._clear_metrics() with _CallbackManager(callbacks) as list_callback: if dataset_sink_mode: return self._eval_dataset_sink_process(valid_dataset, list_callback, cb_params) return self._eval_process(valid_dataset, list_callback, cb_params)
[docs] def predict(self, *predict_data): """ Generate output predictions for the input samples. Data could be a single tensor, a list of tensor, or a tuple of tensor. Note: Batch data should be put together in one tensor. Args: predict_data (Tensor): Tensor of predict data. can be array, list or tuple. Returns: Tensor, array(s) of predictions. Examples: >>> input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]), mindspore.float32) >>> model = Model(Net()) >>> model.predict(input_data) """ self._predict_network.set_train(False) check_input_data(*predict_data, data_class=Tensor) result = self._predict_network(*predict_data) check_output_data(result) return result
__all__ = ["Model"]