Source code for mindspore.nn.probability.distribution.exponential

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Exponential Distribution"""
import numpy as np
from mindspore.ops import operations as P
from mindspore.ops import composite as C
from mindspore.common import dtype as mstype
from .distribution import Distribution
from ._utils.utils import cast_to_tensor, check_greater_zero, check_type, check_distribution_name,\
                          raise_none_error
from ._utils.custom_ops import exp_generic, log_generic

[docs]class Exponential(Distribution): """ Example class: Exponential Distribution. Args: rate (float, list, numpy.ndarray, Tensor, Parameter): inverse scale. seed (int): seed to use in sampling. Default: 0. dtype (mindspore.dtype): type of the distribution. Default: mstype.float32. name (str): name of the distribution. Default: Exponential. Note: rate should be strictly greater than 0. Dist_spec_args is rate. Examples: >>> # To initialize an Exponential distribution of rate 0.5 >>> import mindspore.nn.probability.distribution as msd >>> e = msd.Exponential(0.5, dtype=mstype.float32) >>> >>> # The following creates two independent Exponential distributions >>> e = msd.Exponential([0.5, 0.5], dtype=mstype.float32) >>> >>> # An Exponential distribution can be initilized without arguments >>> # In this case, rate must be passed in through args during function calls >>> e = msd.Exponential(dtype=mstype.float32) >>> >>> # To use Exponential in a network >>> class net(Cell): >>> def __init__(self): >>> super(net, self).__init__(): >>> self.e1 = msd.Exponential(0.5, dtype=mstype.float32) >>> self.e2 = msd.Exponential(dtype=mstype.float32) >>> >>> # All the following calls in construct are valid >>> def construct(self, value, rate_b, rate_a): >>> >>> # Similar calls can be made to other probability functions >>> # by replacing 'prob' with the name of the function >>> ans = self.e1.prob(value) >>> # Evaluate with the respect to distribution b >>> ans = self.e1.prob(value, rate_b) >>> >>> # Rate must be passed in during function calls >>> ans = self.e2.prob(value, rate_a) >>> >>> # Functions 'sd', 'var', 'entropy' have the same usage as'mean' >>> # Will return 2 >>> ans = self.e1.mean() >>> # Will return 1 / rate_b >>> ans = self.e1.mean(rate_b) >>> >>> # Rate must be passed in during function calls >>> ans = self.e2.mean(rate_a) >>> >>> # Usage of 'kl_loss' and 'cross_entropy' are similar >>> ans = self.e1.kl_loss('Exponential', rate_b) >>> ans = self.e1.kl_loss('Exponential', rate_b, rate_a) >>> >>> # Additional rate must be passed in >>> ans = self.e2.kl_loss('Exponential', rate_b, rate_a) >>> >>> # Sample >>> ans = self.e1.sample() >>> ans = self.e1.sample((2,3)) >>> ans = self.e1.sample((2,3), rate_b) >>> ans = self.e2.sample((2,3), rate_a) """ def __init__(self, rate=None, seed=0, dtype=mstype.float32, name="Exponential"): """ Constructor of Exponential distribution. """ param = dict(locals()) valid_dtype = mstype.float_type check_type(dtype, valid_dtype, type(self).__name__) super(Exponential, self).__init__(seed, dtype, name, param) self.parameter_type = dtype if rate is not None: self._rate = cast_to_tensor(rate, self.parameter_type) check_greater_zero(self._rate, "rate") else: self._rate = rate self.minval = np.finfo(np.float).tiny # ops needed for the class self.exp = exp_generic self.log = log_generic self.squeeze = P.Squeeze(0) self.cast = P.Cast() self.const = P.ScalarToArray() self.dtypeop = P.DType() self.fill = P.Fill() self.less = P.Less() self.select = P.Select() self.shape = P.Shape() self.sqrt = P.Sqrt() self.sq = P.Square() self.uniform = C.uniform def extend_repr(self): if self.is_scalar_batch: str_info = f'rate = {self.rate}' else: str_info = f'batch_shape = {self._broadcast_shape}' return str_info @property def rate(self): """ Return rate of the distribution. """ return self._rate def _check_param(self, rate): """ Check availablity of distribution specific args rate. """ if rate is not None: if self.context_mode == 0: self.checktensor(rate, 'rate') else: rate = self.checktensor(rate, 'rate') return self.cast(rate, self.parameter_type) return self.rate if self.rate is not None else raise_none_error('rate') def _mean(self, rate=None): r""" .. math:: MEAN(EXP) = \frac{1.0}{\lambda}. """ rate = self._check_param(rate) return 1.0 / rate def _mode(self, rate=None): r""" .. math:: MODE(EXP) = 0. """ rate = self._check_param(rate) return self.fill(self.dtype, self.shape(rate), 0.) def _sd(self, rate=None): r""" .. math:: sd(EXP) = \frac{1.0}{\lambda}. """ rate = self._check_param(rate) return 1.0 / rate def _entropy(self, rate=None): r""" .. math:: H(Exp) = 1 - \log(\lambda). """ rate = self._check_param(rate) return 1.0 - self.log(rate) def _cross_entropy(self, dist, rate_b, rate=None): """ Evaluate cross_entropy between Exponential distributions. Args: dist (str): type of the distributions. Should be "Exponential" in this case. rate_b (Tensor): rate of distribution b. rate_a (Tensor): rate of distribution a. Default: self.rate. """ check_distribution_name(dist, 'Exponential') return self._entropy(rate) + self._kl_loss(dist, rate_b, rate) def _prob(self, value, rate=None): r""" pdf of Exponential distribution. Args: Args: value (Tensor): value to be evaluated. rate (Tensor): rate of the distribution. Default: self.rate. Note: Value should be greater or equal to zero. .. math:: pdf(x) = rate * \exp(-1 * \lambda * x) if x >= 0 else 0 """ value = self._check_value(value, "value") value = self.cast(value, self.dtype) rate = self._check_param(rate) prob = self.exp(self.log(rate) - rate * value) zeros = self.fill(self.dtypeop(prob), self.shape(prob), 0.0) comp = self.less(value, zeros) return self.select(comp, zeros, prob) def _cdf(self, value, rate=None): r""" cdf of Exponential distribution. Args: value (Tensor): value to be evaluated. rate (Tensor): rate of the distribution. Default: self.rate. Note: Value should be greater or equal to zero. .. math:: cdf(x) = 1.0 - \exp(-1 * \lambda * x) if x >= 0 else 0 """ value = self._check_value(value, 'value') value = self.cast(value, self.dtype) rate = self._check_param(rate) cdf = 1.0 - self.exp(-1. * rate * value) zeros = self.fill(self.dtypeop(cdf), self.shape(cdf), 0.0) comp = self.less(value, zeros) return self.select(comp, zeros, cdf) def _kl_loss(self, dist, rate_b, rate=None): """ Evaluate exp-exp kl divergence, i.e. KL(a||b). Args: dist (str): type of the distributions. Should be "Exponential" in this case. rate_b (Tensor): rate of distribution b. rate_a (Tensor): rate of distribution a. Default: self.rate. """ check_distribution_name(dist, 'Exponential') rate_b = self._check_value(rate_b, 'rate_b') rate_b = self.cast(rate_b, self.parameter_type) rate_a = self._check_param(rate) return self.log(rate_a) - self.log(rate_b) + rate_b / rate_a - 1.0 def _sample(self, shape=(), rate=None): """ Sampling. Args: shape (tuple): shape of the sample. Default: (). rate (Tensor): rate of the distribution. Default: self.rate. Returns: Tensor, shape is shape + batch_shape. """ shape = self.checktuple(shape, 'shape') rate = self._check_param(rate) origin_shape = shape + self.shape(rate) if origin_shape == (): sample_shape = (1,) else: sample_shape = origin_shape minval = self.const(self.minval) maxval = self.const(1.0) sample_uniform = self.uniform(sample_shape, minval, maxval, self.seed) sample = self.log(sample_uniform) / rate value = self.cast(-sample, self.dtype) if origin_shape == (): value = self.squeeze(value) return value