# 使用表格类解释器 [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/xai/docs/source_zh_cn/using_tabular_explainers.md) ## 简介 在这个教程中,我们将使用四个不同的解释器来解释表格数据的分类结果,这四个解释器包括 `LIMETabular` , `SHAPKernel` , `SHAPGradient` 和 `PseudoLinearCoef` 。 以下教程的完整代码:[using_tabular_explainers.py](https://gitee.com/mindspore/xai/blob/master/examples/using_tabular_explainers.py). ## 准备数据集 我们使用 [Iris](https://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html) 数据集进行演示, 这个数据集包含了三种鸢尾花的花瓣长度和萼片长度。 ```python import sklearn.datasets import mindspore as ms iris = sklearn.datasets.load_iris() # 特征名称: ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'] feature_names = iris.feature_names # 类别名称: ['setosa', 'versicolor', 'virginica'] class_names = list(iris.target_names) # 将数据和标签从 numpy 数组转换为 mindspore Tensor # 使用前100个样本 data = ms.Tensor(iris.data, ms.float32)[:100] labels = ms.Tensor(iris.target, ms.int32)[:100] # 解释第一个样本 inputs = data[:1] # 解释标签 'setosa'(类索引 0) targets = 0 ``` ## 准备模型 这里我们定义一个简单的线性分类器。 ```python import numpy as np import mindspore.nn as nn class LinearNet(nn.Cell): def __init__(self): super(LinearNet, self).__init__() # 输入特征个数: 4 # 输出类别个数: 3 self.linear = nn.Dense(4, 3, activation=nn.Softmax()) def construct(self, x): x = self.linear(x) return x net = LinearNet() # 加载预训练参数 weight = np.array([[0.648, 1.440, -2.05, -0.977], [0.507, -0.276, -0.028, -0.626], [-1.125, -1.183, 2.099, 1.605]]) bias = np.array([0.308, 0.343, -0.652]) net.linear.weight.set_data(ms.Tensor(weight, ms.float32)) net.linear.bias.set_data(ms.Tensor(bias, ms.float32)) ``` ## 使用 LIMETabular `LIMETabular` 针对一个复杂难解释的模型,提供一个局部可解释的模型来对单个样本进行解释。 ```python from mindspore_xai.explainer import LIMETabular # 将特征转换为特征统计数据 feature_stats = LIMETabular.to_feat_stats(data, feature_names=feature_names) # 初始化解释器 lime = LIMETabular(net, feature_stats, feature_names=feature_names, class_names=class_names) # 解释 lime_outputs = lime(inputs, targets, show=True) print("LIMETabular:") for i, exps in enumerate(lime_outputs): for exp in exps: print("对于第 {} 个样本的类别 {} 的解释:".format(i, class_names[targets])) print(exp, '\n') ``` 输出: ```text LIMETabular: 对于第 0 个样本的类别 setosa 的解释: [('petal length (cm) <= 1.60', 0.8182714590301656), ('sepal width (cm) > 3.30', 0.0816516722404966), ('petal width (cm) <= 0.30', 0.03557190104069489), ('sepal length (cm) <= 5.10', -0.021441399016492325)] ``` ![lime_tabular](./images/lime_tabular.png) `LIMETabular` 也支持可调用函数,例如: ```python def predict_fn(x): return net(x) # 初始化解释器 lime = LIMETabular(predict_fn, feature_stats, feature_names=feature_names, class_names=class_names) ``` ## 使用 SHAPKernel `SHAPKernel` 使用特殊的加权线性回归来计算每个特征的重要性。 ```python from mindspore_xai.explainer import SHAPKernel # 初始化解释器 shap_kernel = SHAPKernel(net, data, feature_names=feature_names, class_names=class_names) # 解释 shap_kernel_outputs = shap_kernel(inputs, targets, show=True) print("SHAPKernel:") for i, exps in enumerate(shap_kernel_outputs): for exp in exps: print("对于第 {} 个样本的类别 {} 的解释:".format(i, class_names[targets])) print(exp, '\n') ``` 输出: ```text SHAPKernel: 对于第 0 个样本的类别 setosa 的解释: [-0.00403276 0.03651359 0.59952676 0.01399141] ``` ![shap_kernel](./images/shap_kernel.png) `SHAPKernel` 也支持可调用函数,例如: ```python # 初始化解释器 shap_kernel = SHAPKernel(predict_fn, data, feature_names=feature_names, class_names=class_names) ``` ## 使用 SHAPGradient `SHAPGradient` 使用预期梯度(积分梯度的一种扩展)来解释模型。 ```python from mindspore_xai.explainer import SHAPGradient # 初始化解释器 shap_gradient = SHAPGradient(net, data, feature_names=feature_names, class_names=class_names) # 解释 shap_gradient_outputs = shap_gradient(inputs, targets, show=True) print("SHAPGradient:") for i, exps in enumerate(shap_gradient_outputs): for exp in exps: print("对于第 {} 个样本的类别 {} 的解释:".format(i, class_names[targets])) print(exp, '\n') ``` 输出: ```text SHAPGradient: 对于第 0 个样本的类别 setosa 的解释: [-0.0112452 0.08389313 0.47006473 0.0373782 ] ``` ![shap_gradient](./images/shap_gradient.png) ## 使用 PseudoLinearCoef `PseudoLinearCoef` 提供全局归因方法来测量分类器决策边界周围特征的敏感度。 ```python from mindspore_xai.explainer import PseudoLinearCoef # 初始化解释器 plc_explainer = PseudoLinearCoef(net, len(class_names), feature_names=feature_names, class_names=class_names) # 解释 plc, relative_plc = plc_explainer(data, show=True) ``` ![pseudo_linear_coef](./images/PLC.png) ```python print("伪线性系数:") for target, target_name in enumerate(class_names): print(f"{target_name} 类") print(str(plc[target])) print("\n相对伪线性系数:") for target, target_name in enumerate(class_names): for view_point, view_point_name in enumerate(class_names): if target == view_point: continue print(f"{target_name} 相对于 {view_point_name}") print(str(relative_plc[target, view_point])) ``` 输出: ```text 伪线性系数: setosa 类 [-0.12420721 0.15363358 -0.44856226 -0.16351467] versicolor 类 [ 0.03954152 -0.20367564 0.3246966 -0.17629193] virginica 类 [-0.03425665 -0.04525428 0.44189668 0.20307252] 相对伪线性系数: setosa 相对于 versicolor [-0.12564947 0.15629557 -0.44782427 -0.16126522] setosa 相对于 virginica [-0.11122696 0.12967573 -0.45520434 -0.18375972] versicolor 相对于 setosa [ 0.02240782 -0.23672473 0.3889126 0.21666989] versicolor 相对于 virginica [ 0.21087858 0.1268154 -0.31746316 -0.22748768] virginica 相对于 setosa [ 0.07109812 -0.08392082 0.5585888 0.23082316] virginica 相对于 versicolor [-0.15152863 -0.00229146 0.31223866 0.17223847] ```