{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/br_base/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/br_base/tutorials/zh_cn/beginner/mindspore_tensor.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/br_base/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/br_base/tutorials/zh_cn/beginner/mindspore_tensor.py)\n", " [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/br_base/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/br_base/tutorials/source_zh_cn/beginner/tensor.ipynb)\n", "\n", "[基本介绍](https://www.mindspore.cn/tutorials/zh-CN/br_base/beginner/introduction.html) || [快速入门](https://www.mindspore.cn/tutorials/zh-CN/br_base/beginner/quick_start.html) || **张量 Tensor** || [数据加载与处理](https://www.mindspore.cn/tutorials/zh-CN/br_base/beginner/dataset.html) || [网络构建](https://www.mindspore.cn/tutorials/zh-CN/br_base/beginner/model.html) || [函数式自动微分](https://www.mindspore.cn/tutorials/zh-CN/br_base/beginner/autograd.html) || [模型训练](https://www.mindspore.cn/tutorials/zh-CN/br_base/beginner/train.html) || [保存与加载](https://www.mindspore.cn/tutorials/zh-CN/br_base/beginner/save_load.html) || [Graph Mode加速](https://www.mindspore.cn/tutorials/zh-CN/br_base/beginner/accelerate_with_static_graph.html) ||" ] }, { "cell_type": "markdown", "metadata": { "tags": [] }, "source": [ "# 张量 Tensor\n", "\n", "张量(Tensor)是一个多线性函数,可用于表示矢量、标量和其他张量之间的线性关系。常见的线性关系包括内积、外积、线性映射以及笛卡儿积等。张量的坐标在 $n$ 维空间内,有  $n^{r}$ 个分量,每个分量都是坐标的函数。在坐标变换时,这些分量也依照某些规则作线性变换。$r$ 称为该张量的秩或阶(与矩阵的秩和阶无关)。\n", "\n", "张量是一种特殊的数据结构,与数组和矩阵非常相似。张量([Tensor](https://www.mindspore.cn/docs/zh-CN/br_base/api_python/mindspore/mindspore.Tensor.html))是MindSpore网络运算中的基本数据结构,本教程主要介绍张量的属性及用法。" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import mindspore\n", "from mindspore import ops\n", "from mindspore import Tensor" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 创建张量\n", "\n", "张量的创建方式有多种,构造张量时,支持传入`Tensor`、`float`、`int`、`bool`、`tuple`、`list`和`numpy.ndarray`类型。\n", "\n", "- **根据数据直接生成**\n", "\n", " 可以根据数据创建张量。数据类型可以手动设置,也可以由框架自动推断。" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1 0 1 0] (4,) Int64\n" ] } ], "source": [ "data = [1, 0, 1, 0]\n", "x_data = Tensor(data)\n", "print(x_data, x_data.shape, x_data.dtype)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- **从NumPy数组生成**\n", "\n", " 可以从NumPy数组创建张量。" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1 0 1 0] (4,) Int64\n" ] } ], "source": [ "np_array = np.array(data)\n", "x_np = Tensor(np_array)\n", "print(x_np, x_np.shape, x_np.dtype)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- **使用init初始化器构造张量**\n", "\n", " 当使用`init`初始化器对张量进行初始化时,支持传入的参数有`init`、`shape`、`dtype`。\n", "\n", " - `init`: 支持传入[initializer](https://www.mindspore.cn/docs/zh-CN/br_base/api_python/mindspore.common.initializer.html)的子类。如:下方示例中的 [One()](https://www.mindspore.cn/docs/zh-CN/br_base/api_python/mindspore.common.initializer.html#mindspore.common.initializer.One) 和 [Normal()](https://www.mindspore.cn/docs/zh-CN/br_base/api_python/mindspore.common.initializer.html#mindspore.common.initializer.Normal)。\n", "\n", " - `shape`: 支持传入 `list`、`tuple`、 `int`。\n", "\n", " - `dtype`: 支持传入[mindspore.dtype](https://www.mindspore.cn/docs/zh-CN/br_base/api_python/mindspore/mindspore.dtype.html#mindspore.dtype)。" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor1:\n", " [[1. 1.]\n", " [1. 1.]]\n", "tensor2:\n", " [[-0.00063482 -0.00916224]\n", " [ 0.01324238 -0.0171206 ]]\n" ] } ], "source": [ "from mindspore.common.initializer import One, Normal\n", "\n", "# Initialize a tensor with ones\n", "tensor1 = mindspore.Tensor(shape=(2, 2), dtype=mindspore.float32, init=One())\n", "# Initialize a tensor from normal distribution\n", "tensor2 = mindspore.Tensor(shape=(2, 2), dtype=mindspore.float32, init=Normal())\n", "\n", "print(\"tensor1:\\n\", tensor1)\n", "print(\"tensor2:\\n\", tensor2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`init`主要用于并行模式下的延后初始化。在正常情况下,不建议使用init对参数进行初始化。\n", "\n", "- **继承另一个张量的属性,形成新的张量**" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Ones Tensor: \n", " [1 1 1 1] \n", "\n", "Zeros Tensor: \n", " [0 0 0 0] \n", "\n" ] } ], "source": [ "from mindspore import ops\n", "\n", "x_ones = ops.ones_like(x_data)\n", "print(f\"Ones Tensor: \\n {x_ones} \\n\")\n", "\n", "x_zeros = ops.zeros_like(x_data)\n", "print(f\"Zeros Tensor: \\n {x_zeros} \\n\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 张量的属性\n", "\n", "张量的属性包括形状、数据类型、转置张量、单个元素大小、占用字节数量、维数、元素个数和每一维步长。\n", "\n", "- 形状(shape):`Tensor`的shape,为tuple类型。\n", "\n", "- 数据类型(dtype):`Tensor`的dtype,是MindSpore的一个数据类型。\n", "\n", "- 单个元素大小(itemsize): `Tensor`中每一个元素占用字节数,为整数类型。\n", "\n", "- 占用字节数量(nbytes): `Tensor`占用的总字节数,为整数类型。\n", "\n", "- 维数(ndim): `Tensor`的秩,也就是len(tensor.shape),为整数类型。\n", "\n", "- 元素个数(size): `Tensor`中所有元素的个数,为整数类型。\n", "\n", "- 每一维步长(strides): `Tensor`每一维所需要的字节数,为tuple类型。" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "x_shape: (2, 2)\n", "x_dtype: Int32\n", "x_itemsize: 4\n", "x_nbytes: 16\n", "x_ndim: 2\n", "x_size: 4\n", "x_strides: (8, 4)\n" ] } ], "source": [ "x = Tensor(np.array([[1, 2], [3, 4]]), mindspore.int32)\n", "\n", "print(\"x_shape:\", x.shape)\n", "print(\"x_dtype:\", x.dtype)\n", "print(\"x_itemsize:\", x.itemsize)\n", "print(\"x_nbytes:\", x.nbytes)\n", "print(\"x_ndim:\", x.ndim)\n", "print(\"x_size:\", x.size)\n", "print(\"x_strides:\", x.strides)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 张量索引\n", "\n", "Tensor索引与Numpy索引类似。索引从0开始编制,负索引表示按倒序编制。冒号`:`和 `...`用于对数据进行切片。" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "First row: [0. 1.]\n", "value of bottom right corner: 3.0\n", "Last column: [1. 3.]\n", "First column: [0. 2.]\n" ] } ], "source": [ "tensor = Tensor(np.array([[0, 1], [2, 3]]).astype(np.float32))\n", "\n", "print(\"First row: {}\".format(tensor[0]))\n", "print(\"value of bottom right corner: {}\".format(tensor[1, 1]))\n", "print(\"Last column: {}\".format(tensor[:, -1]))\n", "print(\"First column: {}\".format(tensor[..., 0]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 张量运算\n", "\n", "张量之间有很多运算,包括算术、线性代数、矩阵处理(转置、标引、切片)、采样等。张量运算的使用方式和NumPy类似,下面介绍其中几种操作。\n", "\n", "> 普通算术运算包括:加(+)、减(-)、乘(\\*)、除(/)、取模(%)、整除(//)。" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "add: [5. 7. 9.]\n", "sub: [-3. -3. -3.]\n", "mul: [ 4. 10. 18.]\n", "div: [4. 2.5 2. ]\n", "mod: [0. 1. 0.]\n", "floordiv: [4. 2. 2.]\n" ] } ], "source": [ "x = Tensor(np.array([1, 2, 3]), mindspore.float32)\n", "y = Tensor(np.array([4, 5, 6]), mindspore.float32)\n", "\n", "output_add = x + y\n", "output_sub = x - y\n", "output_mul = x * y\n", "output_div = y / x\n", "output_mod = y % x\n", "output_floordiv = y // x\n", "\n", "print(\"add:\", output_add)\n", "print(\"sub:\", output_sub)\n", "print(\"mul:\", output_mul)\n", "print(\"div:\", output_div)\n", "print(\"mod:\", output_mod)\n", "print(\"floordiv:\", output_floordiv)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[concat](https://www.mindspore.cn/docs/zh-CN/br_base/api_python/ops/mindspore.ops.concat.html)将给定维度上的一系列张量连接起来。" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[0. 1.]\n", " [2. 3.]\n", " [4. 5.]\n", " [6. 7.]]\n", "shape:\n", " (4, 2)\n" ] } ], "source": [ "data1 = Tensor(np.array([[0, 1], [2, 3]]).astype(np.float32))\n", "data2 = Tensor(np.array([[4, 5], [6, 7]]).astype(np.float32))\n", "output = ops.concat((data1, data2), axis=0)\n", "\n", "print(output)\n", "print(\"shape:\\n\", output.shape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[stack](https://www.mindspore.cn/docs/zh-CN/br_base/api_python/ops/mindspore.ops.stack.html)则是从另一个维度上将两个张量合并起来。" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[[0. 1.]\n", " [2. 3.]]\n", "\n", " [[4. 5.]\n", " [6. 7.]]]\n", "shape:\n", " (2, 2, 2)\n" ] } ], "source": [ "data1 = Tensor(np.array([[0, 1], [2, 3]]).astype(np.float32))\n", "data2 = Tensor(np.array([[4, 5], [6, 7]]).astype(np.float32))\n", "output = ops.stack([data1, data2])\n", "\n", "print(output)\n", "print(\"shape:\\n\", output.shape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Tensor与NumPy转换\n", "\n", "Tensor可以和NumPy进行互相转换。\n", "\n", "### Tensor转换为NumPy\n", "\n", "可以使用 [Tensor.asnumpy()](https://www.mindspore.cn/docs/zh-CN/br_base/api_python/mindspore/Tensor/mindspore.Tensor.asnumpy.html) 将Tensor变量转换为NumPy变量。" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "t: [1. 1. 1. 1. 1.] \n", "n: [1. 1. 1. 1. 1.] \n" ] } ], "source": [ "t = Tensor([1., 1., 1., 1., 1.])\n", "print(f\"t: {t}\", type(t))\n", "n = t.asnumpy()\n", "print(f\"n: {n}\", type(n))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### NumPy转换为Tensor\n", "\n", "使用`Tensor()`将NumPy变量转换为Tensor变量。" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "n = np.ones(5)\n", "t = Tensor.from_numpy(n)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "n: [2. 2. 2. 2. 2.] \n", "t: [2. 2. 2. 2. 2.] \n" ] } ], "source": [ "np.add(n, 1, out=n)\n", "print(f\"n: {n}\", type(n))\n", "print(f\"t: {t}\", type(t))" ] } ], "metadata": { "kernelspec": { "display_name": "MindSpore", "language": "python", "name": "mindspore" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.5" } }, "nbformat": 4, "nbformat_minor": 4 }