{ "cells": [ { "cell_type": "markdown", "id": "60f63ba4", "metadata": {}, "source": [ "# MindSpore Hybrid 语法规范\n", "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/experts/zh_cn/operation/mindspore_ms_kernel.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/experts/zh_cn/operation/mindspore_ms_kernel.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/tutorials/experts/source_zh_cn/operation/ms_kernel.ipynb)\n", "\n", "## 概述\n", "\n", "MindSpore Hybrid DSL的语法与Python语法类似,例如函数定义、缩进和注释。把MindSpore Hybrid DSL书写的函数加上`kernel`装饰器后可以当做普通的`numpy`函数使用,也可以用于Custom的进行自定义算子。" ] }, { "cell_type": "code", "execution_count": 1, "id": "50190822", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[-0.7582229 1.9742808 -1.5035899 1.6295254 ]\n", " [ 0.18717238 -1.1390371 -0.92540735 0.25755903]\n", " [-0.75234073 0.2182185 0.9805498 0.27473617]\n", " [ 0.7546873 -0.8488003 0.58964515 -0.23971215]]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[[-0.758223 1.9742805 -1.5035899 1.6295254 ]\n", " [ 0.18717244 -1.1390371 -0.9254071 0.2575591 ]\n", " [-0.7523403 0.21821874 0.9805499 0.27473587]\n", " [ 0.75468683 -0.84879947 0.5896454 -0.23971221]]\n" ] } ], "source": [ "import numpy as np\n", "import mindspore as ms\n", "import mindspore.ops as ops\n", "from mindspore.ops import kernel\n", "\n", "@kernel\n", "def outer_product(a, b):\n", " d = allocate(a.shape, a.dtype)\n", " c = output_tensor(a.shape, a.dtype)\n", "\n", " for i0 in range(a.shape[0]):\n", " for i1 in range(b.shape[1]):\n", " c[i0, i1] = 0.0\n", " for i2 in range(a.shape[1]):\n", " d[i0, i2] = 2 * a[i0, i2]\n", " c[i0, i1] = c[i0, i1] + sin(d[i0, i2] * b[i2, i1])\n", " return c\n", "\n", "np_x = np.random.normal(0, 1, [4, 4]).astype(np.float32)\n", "np_y = np.random.normal(0, 1, [4, 4]).astype(np.float32)\n", "\n", "print(outer_product(np_x, np_y))\n", "\n", "input_x = ms.Tensor(np_x)\n", "input_y = ms.Tensor(np_y)\n", "\n", "test_op_akg = ops.Custom(outer_product)\n", "out = test_op_akg(input_x, input_y)\n", "print(out)" ] }, { "cell_type": "markdown", "id": "1a80bae5", "metadata": {}, "source": [ "## 语法规则\n", "\n", "### 变量\n", "\n", "MindSpore Hybrid DSL中的变量包括Tensor和Scalar两种形式。\n", "\n", "对于Tensor类型的变量,除了在输入中提供的变量,其他变量都需要在使用前申明 `shape`和 `dtype`。\n", "\n", "- 对于输出Tensor使用 `output_tensor`,用法为:`output_tensor(shape, dtype)`。\n", "- 对于中间结果使用 `allocate`,用法为:`allocate(shape, dtype)`。\n", "\n", "Tensor分配的示例代码如下:" ] }, { "cell_type": "code", "execution_count": 2, "id": "c8227ab5", "metadata": {}, "outputs": [], "source": [ "@kernel\n", "def kernel_func(a, b):\n", " # a和b作为输入tensor,可以直接使用\n", "\n", " # d为一个数据类型为fp16,形状为(2,)的Tensor,在下面的code中作为中间变量使用\n", " d = allocate((2,), \"float16\")\n", " # c为一个数据类型与b相同,形状与a相同的Tensor,在下面的code中作为函数输出使用\n", " c = output_tensor(a.shape, b.dtype)\n", "\n", " # d作为中间变量,给c赋值\n", " d[0] = b[0, 0]\n", " for i in range(4):\n", " for j in range(4):\n", " c[i, j] = d[0]\n", "\n", " # c作为输出\n", " return c" ] }, { "cell_type": "markdown", "id": "afb59a87", "metadata": {}, "source": [ "对于Scalar类变量,会将它第一次的赋值运算作为声明。赋值操作可以是一个立即数,也可以是一个计算表达式。Scalar类变量第一次赋值的地方决定了它的定义域(例如,某一个for loop之内),在定义域之外使用Scalar变量会报错。\n", "\n", "Scalar变量使用的示例代码如下:" ] }, { "cell_type": "code", "execution_count": 3, "id": "905699c2", "metadata": {}, "outputs": [], "source": [ "@kernel\n", "def kernel_func(a):\n", " c = output_tensor(a.shape, a.dtype)\n", "\n", " for i in range(10): # i loop\n", " for j in range(5): # j loop\n", " # 用一个立即数给Scalar赋值\n", " d = 2.0\n", " # 用表达式给Scalar赋值\n", " e = a[i, j]\n", " # 正常使用scalar\n", " c[i, j] = d + e\n", "\n", " # Wrong: c[0, 0] = d\n", " # 不能在超出Scalar d的定义域(j loop)之外的范围使用\n", "\n", " return c" ] }, { "cell_type": "markdown", "id": "09bef090", "metadata": {}, "source": [ "与原生Python语言不同的是,变量一旦创建,`shape`和 `dtype`就不能改变。\n", "\n", "### 计算表达\n", "\n", "MindSpore Hybrid DSL支持基本的四则运算表达,包括 `+, -, *, /`,及赋值运算符,包括 `=, +=, -=, *=, /=`。\n", "用户可以像写Python表达一样书写计算表达式利用变量计算和为变量赋值。\n", "\n", "所有的计算需要基于标量计算,如果是Tensor对象那么写清楚所有index,即 `C[i, j] = A[i, j] + B[i, j]`。当前不支持 `C = A + B`这种向量化的写法。\n", "\n", "在书写计算表达式时,用户需要自行负责类型的合法性。表达式左右两边的类型需要保持一致,否则在**算子编译环节**会报错。计算式中的整数立即数会被认定为int32,而浮点立即数会被认定为float32。MindSpore Hybrid DSL不提供任何隐式的类型转化,所有类型转化都需要显式的书写出来。类型名即对应类型转换函数的名字,包括:\n", "\n", "- int32\n", "- float16\n", "- float32\n", "- (仅GPU后端)int8, int16, int64, float64\n", "\n", "类型转换代码示例如下:" ] }, { "cell_type": "code", "execution_count": 4, "id": "4ce9278f", "metadata": {}, "outputs": [], "source": [ "@kernel\n", "def kernel_func(a):\n", " c = output_tensor((2,), \"float16\")\n", "\n", " # Wrong: c[0] = 0.1 此处c的类型为fp16, 而0.1的类型为fp32\n", " c[0] = float16(0.1) # float16(0.1)把表达式的类型转化为fp16\n", " c[1] = float16(a[0, 0]) # float16(a[0, 0])把表达式的类型转化为fp16\n", "\n", " return c" ] }, { "cell_type": "markdown", "id": "f5df9dbd", "metadata": {}, "source": [ "### 循环\n", "\n", "当前只支持 `for` loop,不支持 `while`、 `break`、 `continue`关键词。\n", "\n", "基本循环的写法和Python一样,循环维度的表达可以使用 `range`和 `grid`关键词。`range`表示一维的循环维度,接受一个参数表示循环的上限,例如:" ] }, { "cell_type": "code", "execution_count": 5, "id": "c14cc217", "metadata": {}, "outputs": [], "source": [ "@kernel\n", "def kernel_func(a, b):\n", " c = output_tensor((3, 4, 5), \"float16\")\n", "\n", " for i in range(3):\n", " for j in range(4):\n", " for k in range(5):\n", " out[i, j, k] = a[i, j, k] + b[i, j, k]\n", " return c" ] }, { "cell_type": "markdown", "id": "c7b78295", "metadata": {}, "source": [ "则循环表达的计算空间为 `0 <= i < 3, 0 <= j < 4, 0 <= k < 5`。\n", "\n", "`grid`表示多维网格,接受的输入为 `tuple` ,例如上面的代码用 `grid`表达后如下:" ] }, { "cell_type": "code", "execution_count": 6, "id": "bdcb8ae0", "metadata": {}, "outputs": [], "source": [ "@kernel\n", "def kernel_func(a, b):\n", " c = output_tensor((3, 4, 5), \"float16\")\n", "\n", " for arg in grid((4, 5, 6)):\n", " out[arg] = a[arg] + b[arg]\n", " return c" ] }, { "cell_type": "markdown", "id": "e0fb4930", "metadata": {}, "source": [ "此时,参数 `arg`等价于一个三维index `(i,j,k)`,其上限分别为4,5,6。对参数 `arg`我们可以取其中的某个分量,例如" ] }, { "cell_type": "code", "execution_count": 7, "id": "1fc0010f", "metadata": {}, "outputs": [], "source": [ "@kernel\n", "def kernel_func(a, b):\n", " c = output_tensor((3, 4, 5), \"float16\")\n", "\n", " for arg in grid((4, 5, 6)):\n", " out[arg] = a[arg] + b[arg[0]]\n", " return c" ] }, { "cell_type": "markdown", "id": "00679875", "metadata": {}, "source": [ "那么循环内的表达式等价于 `out[i, j, k] = a[i, j, k] + b[i]`。\n", "\n", "### 调度原语\n", "\n", "从1.8版本开始,MindSpore Hybrid DSL 提供调度原语以描述不同类型的循环。在 Ascend 后端,调度原语将协助新 DSA 多面体调度器生成代码。此类调度原语包括:`serial`, `vectorize`, `parallel`,和 `reduce`。\n", "\n", "`serial` 会提示调度器该循环在调度生成时应保持前后顺序,不要做会改变顺序的调度变换,例如:" ] }, { "cell_type": "code", "execution_count": 8, "id": "12f280b1", "metadata": {}, "outputs": [], "source": [ "@kernel\n", "def serial_test(a, b):\n", " row = a.shape[0]\n", " for i in serial(row):\n", " for j in serial(i):\n", " b[i] = b[i] - a[i, j] * b[j]\n", " return b" ] }, { "cell_type": "markdown", "id": "2066b403", "metadata": {}, "source": [ "这里 `serial` 提示 `i` 和 `j` 的计算有依赖关系,调度时应保持 `i` 和 `j` 从小的大的顺序。\n", "\n", "`vectorize` 一般用于最内层循环,会提示调度器该循环有生成向量化指令的机会,例如:" ] }, { "cell_type": "code", "execution_count": 9, "id": "723fcc54", "metadata": {}, "outputs": [], "source": [ "@kernel\n", "def vector_test(a, b):\n", " out = output_tensor(a.shape, a.dtype)\n", " row = a.shape[0]\n", " col = a.shape[1]\n", " for i in range(row):\n", " for j in vectorize(col):\n", " out[i, j] = a[i, j] + b[0, i]\n", " return out" ] }, { "cell_type": "markdown", "id": "aeac324a", "metadata": {}, "source": [ "这里 `vectorize` 提示最内层 `j` 轴循环包含同质化计算,调度时可以生成向量化指令加速内层循环。\n", "\n", "`parallel` 一般用于最外层循环,会提示调度器该循环有并行执行机会,例如:" ] }, { "cell_type": "code", "execution_count": 10, "id": "0a8ffcf8", "metadata": {}, "outputs": [], "source": [ "@kernel\n", "def parallel_test(a, b):\n", " out = output_tensor(a.shape, a.dtype)\n", " row = a.shape[0]\n", " col = a.shape[1]\n", " for i in parallel(row):\n", " for j in range(col):\n", " out[i, j] = a[i, j] + b[0, j]\n", " return out" ] }, { "cell_type": "markdown", "id": "fcad8e24", "metadata": {}, "source": [ "这里 `parallel` 提示最外层 `i` 轴循环无依赖关系,调度时可以并行加速。\n", "\n", "`reduce` 会提示调度器该循环为运算中的一个 Reduction 轴,例如:" ] }, { "cell_type": "code", "execution_count": 11, "id": "b0229b5b", "metadata": {}, "outputs": [], "source": [ "def reduce_test(a):\n", " out = output_tensor((a.shape[0], ), a.dtype)\n", " row = a.shape[0]\n", " col = a.shape[1]\n", " for i in range(row):\n", " out[i] = 0.0\n", " for k in reduce(col):\n", " out[i] = out[i] + a[i, k]\n", " return out" ] }, { "cell_type": "markdown", "id": "729471ae", "metadata": {}, "source": [ "这里 `reduce` 对应的 `k` 轴为累加轴。\n", "\n", "用户在使用调度原语的时候需要注意:\n", "\n", "- 上述调度原语只会在 Ascend 后端影响调度。在CPU和GPU后端,上述调度原语将被处理成普通的 `for` 循环关键词。\n", "- 调度原语对于调度器只是提示作用,当调度原语的提示和调度器自身的分析验证相矛盾时,调度器将把上述调度原语将被处理成普通的 `for` 循环关键词。\n", "\n", "### 属性\n", "\n", "当前只支持对Tensor对象属性shape和dtype,例如 `a.shape`,`c.dtype`。\n", "\n", "一个Tensor的shape属性会表达为一个 `tuple`,我们可以对它进行**固定**下标的取分量操作,例如 `a.shape[0]`。\n", "\n", "同时,在 `grid`关键词中我们接受某个Tensor对象的 `shape`属性,那么循环的维度由Tensor的维度决定。例如:" ] }, { "cell_type": "code", "execution_count": 12, "id": "048a0931", "metadata": {}, "outputs": [], "source": [ "@kernel\n", "def kernel_func(a, b):\n", " c = output_tensor(a.shape, \"float16\")\n", "\n", " for arg in grid(a.shape):\n", " out[arg] = a[arg] + b[arg[0]]\n", " return c" ] }, { "cell_type": "markdown", "id": "5775c852", "metadata": {}, "source": [ "如果a是一个二维Tensor,那么循环内的表达式等价于 `out[i, j] = a[i, j] + b[i]`。而如果a是一个三维Tensor,那么循环内的表达式等价于 `out[i, j, k] = a[i, j, k] + b[i]`。\n", "\n", "### 关键词\n", "\n", "当前支持的关键词包括\n", "\n", "- 全平台支持数学函数:`log`、`exp`、`sqrt`、`tanh`、`power`、`floor`\n", "- 内存分配:`allocate`、 `output_tensor`\n", "- 数据类型转化:`int32`、 `float16`、 `float32`、 `float64`\n", "- 循环表达:`for`、 `range`、 `grid`\n", "- 调度源语:`serial`、 `vec`、 `parallel`、 `reduce`\n", "- 在当前版本中,我们对CPU/GPU后端提供部分进阶关键词:\n", " - 数学函数:`rsqrt`、 `erf`、 `isnan`、 `sin`、 `cos`、 `isinf`、 `isfinite`、 `atan`、 `atan2`(仅GPU)、 `expm1`(仅GPU)、 `floor`、 `ceil`、 `trunc`、 `round`、 `ceil_div`\n", " - 数据类型转换:`int8`,`int16`,`int64`\n", "\n", "## 常见报错信息及错误归因\n", "\n", "为了帮助用户高效地开发和定位bug,MindSpore Hybrid DSL 提供如下报错信息,包括\n", "\n", "- TypeError: 当使用了`while`, `break` 和 `continue` 等 MindSpore Hybrid DSL 不支持的 Python 关键词。\n", "- ValueError:\n", " - 使用了不属于上面的内置函数名;\n", " - 对张量取非 `shape` 或者 `dtype` 的属性。\n", "- 其他常见报错:\n", " - “SyntaxError”: 写的 DSL 不符合基本 Python 语法(非上面的进阶用法中定义的MindSpore Hybrid DSL语法),由 Python 解释器本身报错;\n", " - “ValueError: Compile error”及“The pointer\\[kernel_mod\\] is null”: Python DSL符合语法但是编译失败,由 AKG 报错,具体错误原因检查 AKG 相关报错信息;\n", " - “Launch graph failed”: Python DSL符合语法,编译成功但是运行失败。具体原因参考硬件的报错信息。例如在昇腾芯片上遇到运行失败时,MindSpore 端会显示 “Ascend error occurred” 及对应硬件报错信息。\n", "\n", "## 开发用例:利用hybrid类型的自定义算子实现三维张量的加法函数\n", "\n", "首先,我们写一个基于MindSpore Hybrid DSL书写一个计算三维张量相加的函数。\n", "\n", "注意:\n", "\n", "- 对于输出张量使用 `output_tensor`,用法为:`output_tensor(shape, dtype)`;\n", "- 所有的计算需要基于标量计算,如果是Tensor对象,那么需要写清楚所有index;\n", "- 基本循环的写法和Python一样,循环维度的表达可以使用 `range`。" ] }, { "cell_type": "code", "execution_count": 13, "id": "a3f2e1dc", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from mindspore import ops\n", "import mindspore as ms\n", "from mindspore.ops import kernel\n", "\n", "ms.set_context(device_target=\"GPU\")\n", "@kernel\n", "def tensor_add_3d(x, y):\n", " result = output_tensor(x.shape, x.dtype)\n", " # 1. 你需要一个三层循环\n", " # 2. 第i层循环的上界可以用x.shape[i]获得\n", " # 3. 你需要基于每个元素表达计算,例如加法为 x[i, j, k] + y[i, j, k]\n", " for i in range(x.shape[0]):\n", " for j in range(x.shape[1]):\n", " for k in range(x.shape[2]):\n", " result[i, j, k] = x[i, j, k] + y[i, j, k]\n", "\n", " return result" ] }, { "cell_type": "markdown", "id": "b0f21fbb", "metadata": {}, "source": [ "下面我们用上面的函数自定义一个算子。\n", "\n", "注意到基于`kernel`的`hybrid`函数时,我们可以使用自动的形状和数据类型推导。\n", "\n", "因此我们只用给一个`func`输入(`func_type`的默认值为`\"hybrid\"`)。" ] }, { "cell_type": "code", "execution_count": 14, "id": "29c2be46", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[[3. 3. 3. 3.]\n", " [3. 3. 3. 3.]\n", " [3. 3. 3. 3.]]\n", "\n", " [[3. 3. 3. 3.]\n", " [3. 3. 3. 3.]\n", " [3. 3. 3. 3.]]]\n" ] } ], "source": [ "tensor_add_3d_op = ops.Custom(func=tensor_add_3d)\n", "input_tensor_x = ms.Tensor(np.ones([2, 3, 4]).astype(np.float32))\n", "input_tensor_y = ms.Tensor(np.ones([2, 3, 4]).astype(np.float32) * 2)\n", "result_cus = tensor_add_3d_op(input_tensor_x, input_tensor_y)\n", "print(result_cus)" ] }, { "cell_type": "markdown", "id": "e08512c7", "metadata": {}, "source": [ "同时我们可以使用`pyfunc`模式验证上面定义的正确性。\n", "\n", "这里我们不需要重新定义算子计算函数`tensor_add_3d`,直接将`func_type`改为`\"pyfunc\"`即可。\n", "\n", "注意`pyfunc`模式时我们需要手写类型推导函数。" ] }, { "cell_type": "code", "execution_count": 15, "id": "37d9313f", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[[3. 3. 3. 3.]\n", " [3. 3. 3. 3.]\n", " [3. 3. 3. 3.]]\n", "\n", " [[3. 3. 3. 3.]\n", " [3. 3. 3. 3.]\n", " [3. 3. 3. 3.]]]\n" ] } ], "source": [ "def infer_shape_py(x, y):\n", " return x\n", "\n", "def infer_dtype_py(x, y):\n", " return x\n", "\n", "tensor_add_3d_py_func = ops.Custom(func=tensor_add_3d,\n", " out_shape=infer_shape_py,\n", " out_dtype=infer_dtype_py,\n", " func_type=\"pyfunc\")\n", "\n", "result_pyfunc = tensor_add_3d_py_func(input_tensor_x, input_tensor_y)\n", "print(result_pyfunc)" ] }, { "cell_type": "markdown", "id": "1168faad", "metadata": {}, "source": [ "我们可以得到如下结果,即两个Tensor的和。" ] } ], "metadata": { "kernelspec": { "display_name": "MindSpore", "language": "python", "name": "mindspore" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.10" } }, "nbformat": 4, "nbformat_minor": 5 }