# Auto Augmentation [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.0/resource/_static/logo_source_en.png)](https://gitee.com/mindspore/docs/blob/r2.0/tutorials/experts/source_en/dataset/augment.md) MindSpore not only allows you to customize data augmentation, but also provides an auto augmentation method to automatically perform data augmentation on images based on specific policies. The following is divided into two different automatic data augmentation approaches **based on probability** and **based on callback parameters**. ## Probability-Based Auto Augmentation MindSpore provides a series of probability-based auto augmentation APIs. You can randomly select and combine various data augmentation operations to make data augmentation more flexible. ### RandomApply The `RandomApply` receives a data augmentation operation list and executes the data augmentation operations in the list in sequence at a certain probability or executes none of them. The default probability is 0.5. In the following code example, the `RandomCrop` and `RandomColorAdjust` operations are executed in sequence with a probability of 0.5 or none of them are executed. ```python import mindspore.dataset.vision as vision from mindspore.dataset.transforms import RandomApply transforms_list = [vision.RandomCrop(512), vision.RandomColorAdjust()] rand_apply = RandomApply(transforms_list) ``` ### RandomChoice The API receives a data augmentation operation list `transforms` and randomly selects a data augmentation operation to perform. In the following code example, one of the `CenterCrop` and `RandomCrop` operations is executed with equal probability by calling the `RandomChoice` operation. ```python import mindspore.dataset.vision as vision from mindspore.dataset.transforms import RandomChoice transforms_list = [vision.CenterCrop(512), vision.RandomCrop(512)] rand_choice = RandomChoice(transforms_list) ``` ### RandomSelectSubpolicy The API receives a preset policy list, including a series of sub-policy combinations. Each sub-policy consists of several data augmentation operations executed in sequence and their execution probabilities. First, a sub-policy is randomly selected for each image with equal probability, and then operations are performed according to the probability sequence in the sub-policy. In the following code example, two sub-policies are preset. - Sub-policy 1 contains the `RandomRotation` and `RandomVerticalFlip`operations, whose probabilities are 0.5 and 1.0, respectively. - Sub-policy 2 contains the `RandomRotation` and `RandomColorAdjust` operations, with the probabilities of 1.0 and 0.2, respectively. ```python import mindspore.dataset.vision as vision from mindspore.dataset.vision import RandomSelectSubpolicy policy_list = [ # policy 1: (transforms, probability) [(vision.RandomRotation((45, 45)), 0.5), (vision.RandomVerticalFlip(), 1.0)], # policy 2: (transforms, probability) [(vision.RandomRotation((90, 90)), 1.0), (vision.RandomColorAdjust(), 0.2)] ] policy = RandomSelectSubpolicy(policy_list) ``` ## Callback Parameter-based Auto Augmentation The `sync_wait` API of MindSpore supports dynamic adjustment of the data augmentation policy by batch or epoch granularity during training. You can set blocking conditions to trigger specific data augmentation operations. `sync_wait` blocks the entire data processing pipeline until `sync_update` triggers the customized `callback` function. The two APIs must be used together. Their descriptions are as follows: - sync_wait(condition_name, num_batch=1, callback=None) This API adds a blocking condition `condition_name` to a dataset. When `sync_update` is called, the specified `callback` function is executed. - sync_update(condition_name, num_batch=None, data=None) This API releases the block corresponding to `condition_name` and triggers the specified `callback` function for `data`. The following demonstrates the use of automatic data augmentation based on callback parameters. 1. Customize the `Augment` class where `preprocess` is a custom data augmentation function and `update` is a callback function for updating the data augmentation policy. ```python import numpy as np class Augment: def __init__(self): self.ep_num = 0 self.step_num = 0 def preprocess(self, input_): return np.array((input_ + self.step_num ** self.ep_num - 1),) def update(self, data): self.ep_num = data['ep_num'] self.step_num = data['step_num'] ``` 2. The data processing pipeline calls back the custom data augmentation policy update function `update`, and then performs the data augmentation operation defined in `preprocess` based on the updated policy in the `map` operation. ```python import mindspore.dataset as ds arr = list(range(1, 4)) dataset = ds.NumpySlicesDataset(arr, shuffle=False) aug = Augment() dataset = dataset.sync_wait(condition_name="policy", callback=aug.update) dataset = dataset.map(operations=[aug.preprocess]) ``` 3. Call `sync_update` in each step to update the data augmentation policy. ```python epochs = 5 itr = dataset.create_tuple_iterator(num_epochs=epochs) step_num = 0 for ep_num in range(epochs): for data in itr: print("epcoh: {}, step:{}, data :{}".format(ep_num, step_num, data)) step_num += 1 dataset.sync_update(condition_name="policy", data={'ep_num': ep_num, 'step_num': step_num}) ``` The output is as follows: ```text epcoh: 0, step:0, data :[Tensor(shape=[], dtype=Int64, value= 1)] epcoh: 0, step:1, data :[Tensor(shape=[], dtype=Int64, value= 2)] epcoh: 0, step:2, data :[Tensor(shape=[], dtype=Int64, value= 3)] epcoh: 1, step:3, data :[Tensor(shape=[], dtype=Int64, value= 1)] epcoh: 1, step:4, data :[Tensor(shape=[], dtype=Int64, value= 5)] epcoh: 1, step:5, data :[Tensor(shape=[], dtype=Int64, value= 7)] epcoh: 2, step:6, data :[Tensor(shape=[], dtype=Int64, value= 6)] epcoh: 2, step:7, data :[Tensor(shape=[], dtype=Int64, value= 50)] epcoh: 2, step:8, data :[Tensor(shape=[], dtype=Int64, value= 66)] epcoh: 3, step:9, data :[Tensor(shape=[], dtype=Int64, value= 81)] epcoh: 3, step:10, data :[Tensor(shape=[], dtype=Int64, value= 1001)] epcoh: 3, step:11, data :[Tensor(shape=[], dtype=Int64, value= 1333)] epcoh: 4, step:12, data :[Tensor(shape=[], dtype=Int64, value= 1728)] epcoh: 4, step:13, data :[Tensor(shape=[], dtype=Int64, value= 28562)] epcoh: 4, step:14, data :[Tensor(shape=[], dtype=Int64, value= 38418)] ``` ## ImageNet Automatic Data Augmentation The following is an example of implementing AutoAugment on an ImageNet dataset. The data augmentation policy for the ImageNet dataset contains 25 sub-strategies, each of which contains two transformations. A combination of sub-strategies is randomly selected for each image in a batch, and each transformation in the sub-strategy is determined by predetermined probability. Users can use the `RandomSelectSubpolicy` interface of the `mindspore.dataset.vision` module in MindSpore to implement AutoAugment, and the standard data augmentation method in ImageNet classification training is divided into the following steps: - `RandomCropDecodeResize`: Decoding after random cropping. - `RandomHorizontalFlip`: Flipping randomly horizontally. - `Normalize`: Normalization. - `HWC2CHW`: Changing picture channel. 1. Define the mapping of the MindSpore operation to the AutoAugment operation: ```python import mindspore.dataset.vision as vision import mindspore.dataset.transforms as transforms # define Auto Augmentation operators PARAMETER_MAX = 10 def float_parameter(level, maxval): return float(level) * maxval / PARAMETER_MAX def int_parameter(level, maxval): return int(level * maxval / PARAMETER_MAX) def shear_x(level): transforms_list = [] v = float_parameter(level, 0.3) transforms_list.append(vision.RandomAffine(degrees=0, shear=(-v, -v))) transforms_list.append(vision.RandomAffine(degrees=0, shear=(v, v))) return transforms.RandomChoice(transforms_list) def shear_y(level): transforms_list = [] v = float_parameter(level, 0.3) transforms_list.append(vision.RandomAffine(degrees=0, shear=(0, 0, -v, -v))) transforms_list.append(vision.RandomAffine(degrees=0, shear=(0, 0, v, v))) return transforms.RandomChoice(transforms_list) def translate_x(level): transforms_list = [] v = float_parameter(level, 150 / 331) transforms_list.append(vision.RandomAffine(degrees=0, translate=(-v, -v))) transforms_list.append(vision.RandomAffine(degrees=0, translate=(v, v))) return transforms.RandomChoice(transforms_list) def translate_y(level): transforms_list = [] v = float_parameter(level, 150 / 331) transforms_list.append(vision.RandomAffine(degrees=0, translate=(0, 0, -v, -v))) transforms_list.append(vision.RandomAffine(degrees=0, translate=(0, 0, v, v))) return transforms.RandomChoice(transforms_list) def color_impl(level): v = float_parameter(level, 1.8) + 0.1 return vision.RandomColor(degrees=(v, v)) def rotate_impl(level): transforms_list = [] v = int_parameter(level, 30) transforms_list.append(vision.RandomRotation(degrees=(-v, -v))) transforms_list.append(vision.RandomRotation(degrees=(v, v))) return transforms.RandomChoice(transforms_list) def solarize_impl(level): level = int_parameter(level, 256) v = 256 - level return vision.RandomSolarize(threshold=(0, v)) def posterize_impl(level): level = int_parameter(level, 4) v = 4 - level return vision.RandomPosterize(bits=(v, v)) def contrast_impl(level): v = float_parameter(level, 1.8) + 0.1 return vision.RandomColorAdjust(contrast=(v, v)) def autocontrast_impl(level): return vision.AutoContrast() def sharpness_impl(level): v = float_parameter(level, 1.8) + 0.1 return vision.RandomSharpness(degrees=(v, v)) def brightness_impl(level): v = float_parameter(level, 1.8) + 0.1 return vision.RandomColorAdjust(brightness=(v, v)) ``` 2. Define the AutoAugment policy for the ImageNet dataset: ```python # define the Auto Augmentation policy imagenet_policy = [ [(posterize_impl(8), 0.4), (rotate_impl(9), 0.6)], [(solarize_impl(5), 0.6), (autocontrast_impl(5), 0.6)], [(vision.Equalize(), 0.8), (vision.Equalize(), 0.6)], [(posterize_impl(7), 0.6), (posterize_impl(6), 0.6)], [(vision.Equalize(), 0.4), (solarize_impl(4), 0.2)], [(vision.Equalize(), 0.4), (rotate_impl(8), 0.8)], [(solarize_impl(3), 0.6), (vision.Equalize(), 0.6)], [(posterize_impl(5), 0.8), (vision.Equalize(), 1.0)], [(rotate_impl(3), 0.2), (solarize_impl(8), 0.6)], [(vision.Equalize(), 0.6), (posterize_impl(6), 0.4)], [(rotate_impl(8), 0.8), (color_impl(0), 0.4)], [(rotate_impl(9), 0.4), (vision.Equalize(), 0.6)], [(vision.Equalize(), 0.0), (vision.Equalize(), 0.8)], [(vision.Invert(), 0.6), (vision.Equalize(), 1.0)], [(color_impl(4), 0.6), (contrast_impl(8), 1.0)], [(rotate_impl(8), 0.8), (color_impl(2), 1.0)], [(color_impl(8), 0.8), (solarize_impl(7), 0.8)], [(sharpness_impl(7), 0.4), (vision.Invert(), 0.6)], [(shear_x(5), 0.6), (vision.Equalize(), 1.0)], [(color_impl(0), 0.4), (vision.Equalize(), 0.6)], [(vision.Equalize(), 0.4), (solarize_impl(4), 0.2)], [(solarize_impl(5), 0.6), (autocontrast_impl(5), 0.6)], [(vision.Invert(), 0.6), (vision.Equalize(), 1.0)], [(color_impl(4), 0.6), (contrast_impl(8), 1.0)], [(vision.Equalize(), 0.8), (vision.Equalize(), 0.6)], ] ``` 3. Insert the AutoAugment transform after the `RandomCropDecodeResize` operation. ```python import mindspore.dataset as ds import mindspore as ms def create_dataset(dataset_path, train, repeat_num=1, batch_size=32, shuffle=False, num_samples=5): # create a train or eval imagenet2012 dataset for ResNet-50 dataset = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=shuffle, decode=True) image_size = 224 # define map operations if train: trans = RandomSelectSubpolicy(imagenet_policy) else: trans = [vision.Resize(256), vision.CenterCrop(image_size)] type_cast_op = transforms.TypeCast(ms.int32) # map images and labes dataset = dataset.map(operations=[vision.Resize(256), vision.CenterCrop(image_size)], input_columns="image") dataset = dataset.map(operations=trans, input_columns="image") dataset = dataset.map(operations=type_cast_op, input_columns="label") # apply the batch and repeat operation dataset = dataset.batch(batch_size, drop_remainder=True) dataset = dataset.repeat(repeat_num) return dataset ``` 4. Verify automatic data augmentations: ```python import matplotlib.pyplot as plt from download import download # Define the path to image folder directory. url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/ImageNetSimilar.tar.gz" download(url, "./", kind="tar.gz", replace=True) dataset = create_dataset(dataset_path="ImageNetSimilar", train=True, batch_size=5, shuffle=False) epochs = 5 columns = 5 rows = 5 fig = plt.figure(figsize=(8, 8)) itr = dataset.create_dict_iterator() for ep_num in range(epochs): step_num = 0 for data in itr: for index in range(rows): fig.add_subplot(rows, columns, step_num * rows + index + 1) plt.imshow(data['image'].asnumpy()[index]) step_num += 1 plt.show() ``` > For a better demonstration of the effect, only 5 images are loaded here, and no `shuffle` operation is performed when reading, nor `Normalize` and `HWC2CHW` operations are performed when automatic data augmentation is performed. ![augment](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.0/tutorials/experts/source_en/dataset/images/auto_augmentation.png) The running result can be seen that the augmentation effect of each image in the batch, the vertical direction represents 5 images of 1 batch, and the horizontal direction represents 5 batches. ## References [1] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, Quoc V. Le [AutoAugment: Learning Augmentation Policies from Data](https://arxiv.org/abs/1805.09501).