# 模型安全 ## 概述 本教程介绍MindArmour提供的模型安全防护手段,引导您快速使用MindArmour,为您的AI模型提供一定的安全防护能力。 AI算法设计之初普遍未考虑相关的安全威胁,使得AI算法的判断结果容易被恶意攻击者影响,导致AI系统判断失准。攻击者在原始样本处加入人类不易察觉的微小扰动,导致深度学习模型误判,称为对抗样本攻击。MindArmour模型安全提供对抗样本生成、对抗样本检测、模型防御、攻防效果评估等功能,为AI模型安全研究和AI应用安全提供重要支撑。 - 对抗样本生成模块支持安全工程师快速高效地生成对抗样本,用于攻击AI模型。 - 对抗样本检测、防御模块支持用户检测过滤对抗样本、增强AI模型对于对抗样本的鲁棒性。 - 评估模块提供多种指标全面评估对抗样本攻防性能。 这里通过图像分类任务上的对抗性攻防,以攻击算法FGSM和防御算法NAD为例,介绍MindArmour在对抗攻防上的使用方法。 > 本例面向CPU、GPU、Ascend 910 AI处理器,你可以在这里下载完整的样例代码: > > - mnist_attack_fgsm.py:包含攻击代码。 > - mnist_defense_nad.py:包含防御代码。 ## 建立被攻击模型 以MNIST为示范数据集,自定义的简单模型作为被攻击模型。 ### 引入相关包 ```python import sys import time import numpy as np from scipy.special import softmax from mindspore import dataset as ds import mindspore.common.dtype as mstype import mindspore.dataset.transforms.vision.c_transforms as CV import mindspore.dataset.transforms.c_transforms as C from mindspore.dataset.transforms.vision import Inter import mindspore.nn as nn from mindspore.common.initializer import TruncatedNormal from mindspore import Model from mindspore import Tensor from mindspore import context from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindarmour.attacks.gradient_method import FastGradientSignMethod from mindarmour.utils.logger import LogUtil from mindarmour.evaluations.attack_evaluation import AttackEvaluate context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") LOGGER = LogUtil.get_instance() TAG = 'demo' ``` ### 加载数据集 利用MindSpore的dataset提供的MnistDataset接口加载MNIST数据集。 ```python # generate training data def generate_mnist_dataset(data_path, batch_size=32, repeat_size=1, num_parallel_workers=1, sparse=True): """ create dataset for training or testing """ # define dataset ds1 = ds.MnistDataset(data_path) # define operation parameters resize_height, resize_width = 32, 32 rescale = 1.0 / 255.0 shift = 0.0 # define map operations resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) rescale_op = CV.Rescale(rescale, shift) hwc2chw_op = CV.HWC2CHW() type_cast_op = C.TypeCast(mstype.int32) # apply map operations on images if not sparse: one_hot_enco = C.OneHot(10) ds1 = ds1.map(input_columns="label", operations=one_hot_enco, num_parallel_workers=num_parallel_workers) type_cast_op = C.TypeCast(mstype.float32) ds1 = ds1.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers) ds1 = ds1.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers) ds1 = ds1.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers) ds1 = ds1.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers) # apply DatasetOps buffer_size = 10000 ds1 = ds1.shuffle(buffer_size=buffer_size) ds1 = ds1.batch(batch_size, drop_remainder=True) ds1 = ds1.repeat(repeat_size) return ds1 ``` ### 建立模型 这里以LeNet模型为例,您也可以建立训练自己的模型。 1. 定义LeNet模型网络。 ```python def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): weight = weight_variable() return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="valid") def fc_with_initialize(input_channels, out_channels): weight = weight_variable() bias = weight_variable() return nn.Dense(input_channels, out_channels, weight, bias) def weight_variable(): return TruncatedNormal(0.02) class LeNet5(nn.Cell): """ Lenet network """ def __init__(self): super(LeNet5, self).__init__() self.conv1 = conv(1, 6, 5) self.conv2 = conv(6, 16, 5) self.fc1 = fc_with_initialize(16*5*5, 120) self.fc2 = fc_with_initialize(120, 84) self.fc3 = fc_with_initialize(84, 10) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.flatten = nn.Flatten() def construct(self, x): x = self.conv1(x) x = self.relu(x) x = self.max_pool2d(x) x = self.conv2(x) x = self.relu(x) x = self.max_pool2d(x) x = self.flatten(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.relu(x) x = self.fc3(x) return x ``` 2. 加载预训练的LeNet模型,您也可以训练并保存自己的MNIST模型,参考快速入门。利用上面定义的数据加载函数`generate_mnist_dataset`载入数据。 ```python ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' net = LeNet5() load_dict = load_checkpoint(ckpt_name) load_param_into_net(net, load_dict) # get test data data_list = "./MNIST_unzip/test" batch_size = 32 dataset = generate_mnist_dataset(data_list, batch_size, sparse=False) ``` 3. 测试模型。 ```python # prediction accuracy before attack model = Model(net) batch_num = 3 # the number of batches of attacking samples test_images = [] test_labels = [] predict_labels = [] i = 0 for data in dataset.create_tuple_iterator(): i += 1 images = data[0].astype(np.float32) labels = data[1] test_images.append(images) test_labels.append(labels) pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(), axis=1) predict_labels.append(pred_labels) if i >= batch_num: break predict_labels = np.concatenate(predict_labels) true_labels = np.argmax(np.concatenate(test_labels), axis=1) accuracy = np.mean(np.equal(predict_labels, true_labels)) LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy) ``` 测试结果中分类精度达到了98%。 ```python prediction accuracy before attacking is : 0.9895833333333334 ``` ## 对抗性攻击 调用MindArmour提供的FGSM接口(FastGradientSignMethod)。 ```python # attacking attack = FastGradientSignMethod(net, eps=0.3) start_time = time.clock() adv_data = attack.batch_generate(np.concatenate(test_images), np.concatenate(test_labels), batch_size=32) stop_time = time.clock() np.save('./adv_data', adv_data) pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy() # rescale predict confidences into (0, 1). pred_logits_adv = softmax(pred_logits_adv, axis=1) pred_labels_adv = np.argmax(pred_logits_adv, axis=1) accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels)) LOGGER.info(TAG, "prediction accuracy after attacking is : %s", accuracy_adv) attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1), np.concatenate(test_labels), adv_data.transpose(0, 2, 3, 1), pred_logits_adv) LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', attack_evaluate.mis_classification_rate()) LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', attack_evaluate.avg_conf_adv_class()) LOGGER.info(TAG, 'The average confidence of true class is : %s', attack_evaluate.avg_conf_true_class()) LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' 'samples and adversarial samples are: %s', attack_evaluate.avg_lp_distance()) LOGGER.info(TAG, 'The average structural similarity between original ' 'samples and adversarial samples are: %s', attack_evaluate.avg_ssim()) LOGGER.info(TAG, 'The average costing time is %s', (stop_time - start_time)/(batch_num*batch_size)) ``` 攻击结果如下: ``` prediction accuracy after attacking is : 0.052083 mis-classification rate of adversaries is : 0.947917 The average confidence of adversarial class is : 0.803375 The average confidence of true class is : 0.042139 The average distance (l0, l2, linf) between original samples and adversarial samples are: (1.698870, 0.465888, 0.300000) The average structural similarity between original samples and adversarial samples are: 0.332538 The average costing time is 0.003125 ``` 对模型进行FGSM无目标攻击后,模型精度由98.9%降到5.2%,误分类率高达95%,成功攻击的对抗样本的预测类别的平均置信度(ACAC)为 0.803375,成功攻击的对抗样本的真实类别的平均置信度(ACTC)为 0.042139,同时给出了生成的对抗样本与原始样本的零范数距离、二范数距离和无穷范数距离,平均每个对抗样本与原始样本间的结构相似性为0.332538,平均每生成一张对抗样本所需时间为0.003125s。 攻击前后效果如下图,左侧为原始样本,右侧为FGSM无目标攻击后生成的对抗样本。从视觉角度而言,右侧图片与左侧图片几乎没有明显变化,但是均成功误导了模型,使模型将其误分类为其他非正确类别。 ![adv_attack_result](./images/adv_attack_result.png) ## 对抗性防御 NaturalAdversarialDefense(NAD)是一种简单有效的对抗样本防御方法,使用对抗训练的方式,在模型训练的过程中构建对抗样本,并将对抗样本与原始样本混合,一起训练模型。随着训练次数的增加,模型在训练的过程中提升对于对抗样本的鲁棒性。NAD算法使用FGSM作为攻击算法,构建对抗样本。 ### 防御实现 调用MindArmour提供的NAD防御接口(NaturalAdversarialDefense)。 ```python from mindspore.nn import SoftmaxCrossEntropyWithLogits from mindarmour.defenses import NaturalAdversarialDefense loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=False) opt = nn.Momentum(net.trainable_params(), 0.01, 0.09) nad = NaturalAdversarialDefense(net, loss_fn=loss, optimizer=opt, bounds=(0.0, 1.0), eps=0.3) net.set_train() nad.batch_defense(np.concatenate(test_images), np.concatenate(test_labels), batch_size=32, epochs=20) # get accuracy of test data on defensed model net.set_train(False) acc_list = [] pred_logits_adv = [] for i in range(batch_num): batch_inputs = test_images[i] batch_labels = test_labels[i] logits = net(Tensor(batch_inputs)).asnumpy() pred_logits_adv.append(logits) label_pred = np.argmax(logits, axis=1) acc_list.append(np.mean(np.argmax(batch_labels, axis=1) == label_pred)) pred_logits_adv = np.concatenate(pred_logits_adv) pred_logits_adv = softmax(pred_logits_adv, axis=1) LOGGER.info(TAG, 'accuracy of TEST data on defensed model is : %s', np.mean(acc_list)) acc_list = [] for i in range(batch_num): batch_inputs = adv_data[i * batch_size: (i + 1) * batch_size] batch_labels = test_labels[i] logits = net(Tensor(batch_inputs)).asnumpy() label_pred = np.argmax(logits, axis=1) acc_list.append(np.mean(np.argmax(batch_labels, axis=1) == label_pred)) attack_evaluate = AttackEvaluate(np.concatenate(test_images), np.concatenate(test_labels), adv_data, pred_logits_adv) LOGGER.info(TAG, 'accuracy of adv data on defensed model is : %s', np.mean(acc_list)) LOGGER.info(TAG, 'defense mis-classification rate of adversaries is : %s', attack_evaluate.mis_classification_rate()) LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', attack_evaluate.avg_conf_adv_class()) LOGGER.info(TAG, 'The average confidence of true class is : %s', attack_evaluate.avg_conf_true_class()) LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' 'samples and adversarial samples are: %s', attack_evaluate.avg_lp_distance()) ``` ### 防御效果 ``` accuracy of TEST data on defensed model is : 0.974259 accuracy of adv data on defensed model is : 0.856370 defense mis-classification rate of adversaries is : 0.143629 The average confidence of adversarial class is : 0.616670 The average confidence of true class is : 0.177374 The average distance (l0, l2, linf) between original samples and adversarial samples are: (1.493417, 0.432914, 0.300000) ``` 使用NAD进行对抗样本防御后,模型对于对抗样本的误分类率从95%降至14%,模型有效地防御了对抗样本。同时,模型对于原来测试数据集的分类精度达97%,使用NAD防御功能,并未降低模型的分类精度。