# 加载模型用于推理或迁移学习 `Linux` `Ascend` `GPU` `CPU` `模型加载` `初级` `中级` `高级` [![查看源文件](../_static/logo_source.png)](https://gitee.com/mindspore/docs/blob/r1.2/tutorials/training/source_zh_cn/use/load_model_for_inference_and_transfer.md)    [![查看notebook](../_static/logo_notebook.png)](https://obs.dualstack.cn-north-4.myhuaweicloud.com/mindspore-website/notebook/r1.2/mindspore_load_model_for_inference_and_transfer.ipynb)    [![在线运行](../_static/logo_modelarts.png)](https://console.huaweicloud.com/modelarts/?region=cn-north-4#/notebook/loading?share-url-b64=aHR0cHM6Ly9vYnMuZHVhbHN0YWNrLmNuLW5vcnRoLTQubXlodWF3ZWljbG91ZC5jb20vbWluZHNwb3JlLXdlYnNpdGUvbm90ZWJvb2svbW9kZWxhcnRzL21pbmRzcG9yZV9sb2FkX21vZGVsX2Zvcl9pbmZlcmVuY2VfYW5kX3RyYW5zZmVyLmlweW5i&image_id=65f636a0-56cf-49df-b941-7d2a07ba8c8c) ## 概述 在模型训练过程中保存在本地的CheckPoint文件,或从[MindSpore Hub](https://www.mindspore.cn/resources/hub/)下载的CheckPoint文件,都可以帮助用户进行推理或迁移学习使用。 以下通过示例来介绍如何通过本地加载或Hub加载模型,用于推理验证和迁移学习。 ## 本地加载模型 ### 用于推理验证 针对仅推理场景可以使用`load_checkpoint`把参数直接加载到网络中,以便进行后续的推理验证。 示例代码如下: ```python resnet = ResNet50() load_checkpoint("resnet50-2_32.ckpt", net=resnet) dateset_eval = create_dataset(os.path.join(mnist_path, "test"), 32, 1) # define the test dataset loss = CrossEntropyLoss() model = Model(resnet, loss, metrics={"accuracy"}) acc = model.eval(dataset_eval) ``` - `load_checkpoint`方法会把参数文件中的网络参数加载到模型中。加载后,网络中的参数就是CheckPoint保存的。 - `eval`方法会验证训练后模型的精度。 ### 用于迁移学习 针对任务中断再训练及微调(Fine Tune)场景,可以加载网络参数和优化器参数到模型中。 示例代码如下: ```python # return a parameter dict for model param_dict = load_checkpoint("resnet50-2_32.ckpt") resnet = ResNet50() opt = Momentum() # load the parameter into net load_param_into_net(resnet, param_dict) # load the parameter into optimizer load_param_into_net(opt, param_dict) loss = SoftmaxCrossEntropyWithLogits() model = Model(resnet, loss, opt) model.train(epoch, dataset) ``` - `load_checkpoint`方法会返回一个参数字典。 - `load_param_into_net`会把参数字典中相应的参数加载到网络或优化器中。 ## 从Hub加载模型 ### 用于推理验证 `mindspore_hub.load` API用于加载预训练模型,可以实现一行代码完成模型的加载。主要的模型加载流程如下: 1. 在[MindSpore Hub官网](https://www.mindspore.cn/resources/hub)上搜索感兴趣的模型。 例如,想使用GoogleNet对CIFAR-10数据集进行分类,可以在MindSpore Hub官网上使用关键词`GoogleNet`进行搜索。页面将会返回与GoogleNet相关的所有模型。进入相关模型页面之后,获得详情页`url`。 2. 使用`url`完成模型的加载,示例代码如下: ```python import mindspore_hub as mshub import mindspore from mindspore import context, Tensor, nn, Model from mindspore import dtype as mstype import mindspore.dataset.vision.py_transforms as py_transforms context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=0) model = "mindspore/ascend/0.7/googlenet_v1_cifar10" # Initialize the number of classes based on the pre-trained model. network = mshub.load(model, num_classes=10) network.set_train(False) # ... ``` 3. 完成模型加载后,可以使用MindSpore进行推理,参考[推理模型总览](https://www.mindspore.cn/tutorial/inference/zh-CN/r1.2/multi_platform_inference.html)。 ### 用于迁移学习 通过`mindspore_hub.load`完成模型加载后,可以增加一个额外的参数项只加载神经网络的特征提取部分,这样我们就能很容易地在之后增加一些新的层进行迁移学习。*当模型开发者将额外的参数(例如 `include_top`)添加到模型构造中时,可以在模型的详情页中找到这个功能。`include_top`取值为True或者False,表示是否保留顶层的全连接网络。* 下面我们以[MobileNetV2](https://gitee.com/mindspore/mindspore/tree/r1.0/model_zoo/official/cv/mobilenetv2)为例,说明如何加载一个基于OpenImage的预训练模型,并在特定的子任务数据集上进行迁移学习(重训练)。主要的步骤如下: 1. 在[MindSpore Hub官网](https://www.mindspore.cn/resources/hub/)上搜索感兴趣的模型,并从网站上获取特定的`url`。 2. 使用`url`进行MindSpore Hub模型的加载,注意:`include_top`参数需要模型开发者提供。 ```python import os import mindspore_hub as mshub import mindspore from mindspore import context, Tensor, nn from mindspore.nn import Momentum from mindspore.train.serialization import save_checkpoint, load_checkpoint,load_param_into_net from mindspore import ops import mindspore.dataset as ds import mindspore.dataset.transforms.c_transforms as C2 import mindspore.dataset.vision.c_transforms as C from mindspore import dtype as mstype from mindspore import Model context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=0) model = "mindspore/ascend/1.0/mobilenetv2_v1.0_openimage" network = mshub.load(model, num_classes=500, include_top=False, activation="Sigmoid") network.set_train(False) ``` 3. 在现有模型结构基础上,增加一个与新任务相关的分类层。 ```python class ReduceMeanFlatten(nn.Cell): def __init__(self): super(ReduceMeanFlatten, self).__init__() self.mean = ops.ReduceMean(keep_dims=True) self.flatten = nn.Flatten() def construct(self, x): x = self.mean(x, (2, 3)) x = self.flatten(x) return x # Check MindSpore Hub website to conclude that the last output shape is 1280. last_channel = 1280 # The number of classes in target task is 10. num_classes = 10 reducemean_flatten = ReduceMeanFlatten() classification_layer = nn.Dense(last_channel, num_classes) classification_layer.set_train(True) train_network = nn.SequentialCell([network, reducemean_flatten, classification_layer]) ``` 4. 定义数据集加载函数。 如下所示,进行微调任务的数据集为[CIFAR-10](https://www.cs.toronto.edu/~kriz/cifar.html),注意此处需要下载二进制版本(`binary version`)的数据。下载解压后可以通过如下所示代码加载和处理数据。`dataset_path`是数据集的保存路径,由用户给定。 ```python def create_cifar10dataset(dataset_path, batch_size, do_train): if do_train: usage, shuffle = "train", True else: usage, shuffle = "test", False data_set = ds.Cifar10Dataset(dataset_dir=dataset_path, usage=usage, shuffle=True) # define map operations trans = [C.Resize((256, 256))] if do_train: trans += [ C.RandomHorizontalFlip(prob=0.5), ] trans += [ C.Rescale(1.0 / 255.0, 0.0), C.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), C.HWC2CHW() ] type_cast_op = C2.TypeCast(mstype.int32) data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8) data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=8) # apply batch operations data_set = data_set.batch(batch_size, drop_remainder=True) return data_set # Create Dataset dataset_path = "/path_to_dataset/cifar-10-batches-bin" dataset = create_cifar10dataset(dataset_path, batch_size=32, do_train=True) ``` 5. 为模型训练选择损失函数、优化器和学习率。 ```python def generate_steps_lr(lr_init, steps_per_epoch, total_epochs): total_steps = total_epochs * steps_per_epoch decay_epoch_index = [0.3*total_steps, 0.6*total_steps, 0.8*total_steps] lr_each_step = [] for i in range(total_steps): if i < decay_epoch_index[0]: lr = lr_init elif i < decay_epoch_index[1]: lr = lr_init * 0.1 elif i < decay_epoch_index[2]: lr = lr_init * 0.01 else: lr = lr_init * 0.001 lr_each_step.append(lr) return lr_each_step # Set epoch size epoch_size = 60 # Wrap the backbone network with loss. loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") loss_net = nn.WithLossCell(train_network, loss_fn) steps_per_epoch = dataset.get_dataset_size() lr = generate_steps_lr(lr_init=0.01, steps_per_epoch=steps_per_epoch, total_epochs=epoch_size) # Create an optimizer. optim = Momentum(filter(lambda x: x.requires_grad, classification_layer.get_parameters()), Tensor(lr, mindspore.float32), 0.9, 4e-5) train_net = nn.TrainOneStepCell(loss_net, optim) ``` 6. 开始重训练。 ```python for epoch in range(epoch_size): for i, items in enumerate(dataset): data, label = items data = mindspore.Tensor(data) label = mindspore.Tensor(label) loss = train_net(data, label) print(f"epoch: {epoch}/{epoch_size}, loss: {loss}") # Save the ckpt file for each epoch. if not os.path.exists('ckpt'): os.mkdir('ckpt') ckpt_path = f"./ckpt/cifar10_finetune_epoch{epoch}.ckpt" save_checkpoint(train_network, ckpt_path) ``` 7. 在测试集上测试模型精度。 ```python model = "mindspore/ascend/1.0/mobilenetv2_v1.0_openimage" network = mshub.load(model, num_classes=500, pretrained=True, include_top=False, activation="Sigmoid") network.set_train(False) reducemean_flatten = ReduceMeanFlatten() classification_layer = nn.Dense(last_channel, num_classes) classification_layer.set_train(False) softmax = nn.Softmax() network = nn.SequentialCell([network, reducemean_flatten, classification_layer, softmax]) # Load a pre-trained ckpt file. ckpt_path = "./ckpt/cifar10_finetune_epoch59.ckpt" trained_ckpt = load_checkpoint(ckpt_path) load_param_into_net(classification_layer, trained_ckpt) loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") # Define loss and create model. eval_dataset = create_cifar10dataset(dataset_path, batch_size=32, do_train=False) eval_metrics = {'Loss': nn.Loss(), 'Top1-Acc': nn.Top1CategoricalAccuracy(), 'Top5-Acc': nn.Top5CategoricalAccuracy()} model = Model(network, loss_fn=loss, optimizer=None, metrics=eval_metrics) metrics = model.eval(eval_dataset) print("metric: ", metrics) ```