mindscience.models.layers.MaskedLayerNorm
- class mindscience.models.layers.MaskedLayerNorm[source]
Masked layer normalization. Applies layer normalization with mask to the input tensor.
- Inputs:
act (Tensor) - Tensor of shape \((*, in\_channels)\).
gamma (Tensor) - Scale parameter of shape \((in\_channels,)\).
beta (Tensor) - Offset parameter of shape \((in\_channels,)\).
mask (Tensor, optional) - Mask tensor of shape \((*, 1)\). Default:
None.
- Outputs:
Tensor of shape \((*, in\_channels)\).
Examples
>>> import mindspore as ms >>> import mindspore.numpy as mnp >>> from mindspore import Tensor >>> from mindscience.models.layers import MaskedLayerNorm >>> ms.set_context(mode=ms.GRAPH_MODE, device_target="GPU") >>> x = Tensor(mnp.random.randn(2, 3, 4).astype(mnp.float32)) >>> gamma = Tensor(mnp.ones((4,)).astype(mnp.float32)) >>> beta = Tensor(mnp.zeros((4,)).astype(mnp.float32)) >>> mask = Tensor(mnp.ones((2, 3)).astype(mnp.float32)) >>> net = MaskedLayerNorm() >>> output = net(x, gamma, beta, mask) >>> print(output.shape) (2, 3, 4)