mindscience.e3nn.utils.radius_graph_full
- mindscience.e3nn.utils.radius_graph_full(x, batch=None, loop=False, flow='source_to_target')[source]
Computes graph edges to all points within a given distance.
- Parameters
x (Tensor) – node feature matrix.
batch (ndarray, optional) – batch vector. If it is none, then calculate and return. Default:
None.loop (bool, optional) – whether contain self-loops in the graph. Default:
False.flow (str, optional) – {'source_to_target', 'target_to_source'}, the flow direction when using in combination with message passing. Default:
'source_to_target'.
- Returns
edge_index (numpy.ndarray) - including edges of source and destination.
batch (numpy.ndarray) - batch vector.
- Raises
ValueError – If flow is not in {'source_to_target', 'target_to_source'}.
Examples
>>> from mindscience.e3nn.utils import radius_graph_full >>> from mindspore import ops, Tensor >>> x = Tensor(ops.ones((5, 12, 3))) >>> edge_index, batch = radius_graph_full(x) >>> print(edge_index.shape) (2, 660) >>> print(batch.shape) (60,)