mindscience.e3nn.o3.angles_to_matrix
- mindscience.e3nn.o3.angles_to_matrix(alpha, beta, gamma)[source]
Convert Euler angles (\(\alpha\), \(\beta\), \(\gamma\)) into the corresponding \(3 \times 3\) rotation matrix. The resulting matrix represents the rotation
\[R = Ry(\alpha) * Rx(\beta) * Ry(\gamma).\]- Parameters
alpha (Union[Tensor[float32], list[float], tuple[float], ndarray[np.float32], float]) – The alpha Euler angles. The shape of Tensor is \((...)\).
beta (Union[Tensor[float32], list[float], tuple[float], ndarray[np.float32], float]) – The beta Euler angles. The shape of Tensor is \((...)\).
gamma (Union[Tensor[float32], list[float], tuple[float], ndarray[np.float32], float]) – The gamma Euler angles. The shape of Tensor is \((...)\).
- Returns
Tensor, the rotation matrices. Matrices of shape \((..., 3, 3)\).
Examples
>>> from mindscience.e3nn.o3 import angles_to_matrix >>> m = angles_to_matrix(0.4, 0.5, 0.6) >>> print(m) [[ 0.5672197 0.1866971 0.8021259 ] [ 0.27070403 0.87758255 -0.395687 ] [-0.77780527 0.44158012 0.4472424 ]]