mindscience.common.SpectralNorm
- class mindscience.common.SpectralNorm(module, n_power_iterations=1, dim=0, eps=1e-12)[source]
Applies spectral normalization to a parameter in the given module.
Spectral normalization stabilizes the training of discriminators (critics) in Generative Adversarial Networks (GANs) by rescaling the weight tensor with spectral norm.
- Parameters
module (nn.Cell) – Containing module.
n_power_iterations (int, optional) – Number of power iterations to calculate spectral norm. Default
1.dim (int, optional) – Dimension corresponding to number of outputs. Default
0.eps (float, optional) – Epsilon for numerical stability in calculating norms. Default
1e-12.
- Inputs:
input - The positional parameter of containing module.
kwargs - The keyword parameter of containing module.
- Outputs:
The forward propagation of containing module.