{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 量子相位估计算法\n", "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.0.0-alpha/resource/_static/logo_notebook.png)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/r2.0.0-alpha/mindquantum/zh_cn/mindspore_quantum_phase_estimation.ipynb) \n", "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.0.0-alpha/resource/_static/logo_download_code.png)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/r2.0.0-alpha/mindquantum/zh_cn/mindspore_quantum_phase_estimation.py) \n", "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.0.0-alpha/resource/_static/logo_source.png)](https://gitee.com/mindspore/docs/blob/r2.0.0-alpha/docs/mindquantum/docs/source_zh_cn/quantum_phase_estimation.ipynb) \n", "[![在ModelArts平台运行](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.0.0-alpha/resource/_static/logo_modelarts.png)](https://authoring-modelarts-cnnorth4.huaweicloud.com/console/lab?share-url-b64=aHR0cHM6Ly9taW5kc3BvcmUtd2Vic2l0ZS5vYnMuY24tbm9ydGgtNC5teWh1YXdlaWNsb3VkLmNvbS9ub3RlYm9vay9yMi4wLjAtYWxwaGEvbWluZHF1YW50dW0vemhfY24vbWluZHNwb3JlX3F1YW50dW1fcGhhc2VfZXN0aW1hdGlvbi5pcHluYg%3D%3D&imageid=b711ac95-db2b-45b7-ab9b-98de275dd57e)\n", "\n", "## 概述\n", "\n", "量子相位估计算法(Quantum Phase Estimation Algorithm,简称QPE),是很多量子算法的关键。假设一个幺正算符 $U$,这个幺正算符作用在其本征态 $|u\\rangle$ 上会出现一个相位 $e^{2\\pi i \\varphi}$,现在我们假设 $U$ 算符的本征值未知,也就是 $\\varphi$ 未知,但是 $U$ 算符和本征态 $|u\\rangle$ 已知,相位估计算法的作用就是对这个相位 $\\varphi$ 进行估计。" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![quantum phase estimation](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.0.0-alpha/docs/mindquantum/docs/source_zh_cn/images/quantum_phase_estimation.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 算法解析\n", "\n", "量子相位估计算法的实现需要两个寄存器(register),第一寄存器包含$t$个初始在 $|0\\rangle$ 的量子比特,比特数和最后相位估计的结果的精度和算法的成功概率相关;第二个寄存器初始化在幺正算符 $U$ 的本征态 $|u\\rangle$ 上。相位估计算法主要分为三步:\n", "\n", "1. 对第一寄存器的所有量子比特进行 `Hadamard` 门操作,对第二寄存器连续进行 `控制U` 门操作,其中 $U$ 门的幂次依次为 $2^0, 2^1,...,2^{t-1}$,控制比特依次为 $q_{t-1}, q_{t-2},..., q_{1}, q_{0}$。这时第一寄存器中的态就会变为\n", "\n", "$$\n", "|\\psi_1\\rangle=\\frac{1}{2^{t/2}}\\left(|0\\rangle+e^{i2\\pi 2^{t-1}\\varphi}|1\\rangle\\right)\\left(|0\\rangle+e^{i2\\pi2^{t-2}\\varphi}|1\\rangle\\right)...\\left(|0\\rangle+e^{i2\\pi 2^{0}\\varphi}|1\\rangle\\right) = \\frac{1}{2^{t/2}}\\sum_{k=0}^{2^t-1}e^{i2\\pi\\varphi k}|k\\rangle\n", "$$\n", "\n", "其中$k$为直积态的十进制表示,比如 $k=0$ 表示第一寄存器中t个比特全部在基态 $|00...00\\rangle$, $k=2$ 表示 $|00...10\\rangle$,以此类推。\n", "\n", "2. 对第一寄存器的进行量子傅里叶变换的逆变换(Inverse Quantum Fourier Transform),在线路中表示成 $QFT^\\dagger$, 对 $|\\psi_1\\rangle$ 进行逆量子傅里叶变换可得 $|\\psi_2\\rangle$\n", "\n", "$$\n", "|\\psi_2\\rangle=QFT^\\dagger|\\psi_1\\rangle =\\frac{1}{2^t}\\sum_{x=0}^{2^t-1}a_x|x\\rangle\n", "$$\n", "\n", "其中\n", "\n", "$$\n", "a_x=\\sum_{k=0}^{2^t-1}e^{2\\pi i k(\\varphi-x/2^t)}\n", "$$\n", "\n", "为本征基矢 $|x\\rangle$ ($x=0.1,...,2^t$) 对应的概率幅 。由上式可得,当 $2^t\\varphi$ 为整数,且满足 $x=2^t\\varphi$ 时,概率幅取最大值1,此时第一寄存器的末态可以精确反映 $\\varphi$;当 $2^t\\varphi$ 不是整数时,$x$ 为 $\\varphi$ 的估计,且$t$越大,估计精度越高。\n", "\n", "3. 对第一寄存器的量子比特进行测量,得到第一寄存器的末态 $f=\\sum_{x}^{2^t-1}a_x|x\\rangle$, $x=0,1,...,2^t$,从中找到最大的振幅 $a_{max}$,其对应的本征基矢 $|x\\rangle$ 中的 $x$ 再除以 $2^t$ 即为相位的估计值。\n", "\n", "## QPE代码实现\n", "\n", "下面用一个实例来演示如何在MindQuantum实现量子相位估计算法,选择 `T` 门作为进行估计的幺正算符,由定义\n", "\n", "$$\n", "T|1\\rangle=e^{i\\pi/4}|1\\rangle\n", "$$\n", "\n", "可知需要估计的相位角为 $\\varphi=\\frac{1}{8}$。\n", "\n", "现在假设我们不知道 `T` 门的相位信息,只知道幺正算符 $U$ 是 `T` 门且本征态为 $|1\\rangle$ ,接下来我们需要用量子相位估计算法求出其对应的本征值,即需要估计本征值指数上的相位角。\n", "\n", "首先导入相关依赖。" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from mindquantum.core.gates import T, H, X, Power, BARRIER\n", "from mindquantum.core.circuit import Circuit, UN\n", "from mindquantum.simulator import Simulator\n", "from mindquantum.algorithm.library import qft\n", "import numpy as np" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`UN` 可以指定量子门,目标比特和控制比特,从而在线路中搭建门操作; `Power` 可以得到指定量子门的指数形式。因为我们已知 `T` 门的本征态为 $|1\\rangle$,所以第二寄存器只需1个比特,而在第一寄存器中的比特数越多,得到的结果就越准确,在这里我们使用4个比特。\n", "\n", "因此我们需要搭建5比特线路, $q_0, q_1, q_2, q_3$ 比特用于估计,属于第一寄存器, $q_4$ 属于第二寄存器用于传入 $T$ 算符的本征态。\n", "\n", "利用 `UN` 对 $q_0, q_1, q_2, q_3$ 进行 `Hadamard` 门操作, 用 `X` 门对 $q_4$ 进行翻转,得到 `T` 门的本征态 $|1\\rangle$。" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": "\n\n\nq0:\n \n\nq1:\n \n\nq2:\n \n\nq3:\n \n\nq4:\n \n\n\n\n\n\n\n\n\nH\n \n\n\n\n\nH\n \n\n\n\n\nH\n \n\n\n\n\nH\n \n\n\n\n\nX\n \n\n", "text/plain": [ "" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# pylint: disable=W0104\n", "n = 4\n", "circ = Circuit()\n", "circ += UN(H, n) # 对前4个比特作用力H门\n", "circ += X.on(n) # 对q4作用X门\n", "circ.svg()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "以 $q_4$ 为目标比特,添加控制$T^{2^i}$门。" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": "\n\n\nq0:\n \n\nq1:\n \n\nq2:\n \n\nq3:\n \n\nq4:\n \n\n\n\n\n\n\n\n\nH\n \n\n\n\n\nH\n \n\n\n\n\nH\n \n\n\n\n\nH\n \n\n\n\n\nX\n \n\n\n\n\n\nT^1\n \n\n\n\n\n\nT^2\n \n\n\n\n\n\nT^4\n \n\n\n\n\n\nT^8\n \n\n", "text/plain": [ "" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# pylint: disable=W0104\n", "for i in range(n):\n", " circ += Power(T, 2**i).on(n, n - i - 1) # 添加T^2^i门,其中q4为目标比特,n-i-1为控制比特\n", "circ.svg()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "对第一寄存器中的比特进行逆量子傅里叶变换。" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": "\n\n\nq0:\n \n\nq1:\n \n\nq2:\n \n\nq3:\n \n\nq4:\n \n\n\n\n\n\n\n\n\nH\n \n\n\n\n\nH\n \n\n\n\n\nH\n \n\n\n\n\nH\n \n\n\n\n\nX\n \n\n\n\n\n\nT^1\n \n\n\n\n\n\nT^2\n \n\n\n\n\n\nT^4\n \n\n\n\n\n\nT^8\n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nH\n \n\n\n\n\n\nPS\n \n\n-π/2\n \n\n\n\n\nH\n \n\n\n\n\n\nPS\n \n\n-π/4\n \n\n\n\n\n\nPS\n \n\n-π/2\n \n\n\n\n\nH\n \n\n\n\n\n\nPS\n \n\n-π/8\n \n\n\n\n\n\nPS\n \n\n-π/4\n \n\n\n\n\n\nPS\n \n\n-π/2\n \n\n\n\n\nH\n \n\n", "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# pylint: disable=W0104\n", "circ += BARRIER\n", "circ += qft(range(n)).hermitian() # 对前4个比特作用量子傅立叶变换的逆变换\n", "circ.svg()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "选择后端、传入总比特数创建模拟器,对量子线路进行演化,得到末态。" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "tags": [] }, "outputs": [ { "data": { "image/svg+xml": "\n\n\nShots:\n 100\n \n\nKeys: q0 q1 q2 q3\n \n\n\n\n0.0\n \n\n\n\n0.2\n \n\n\n\n0.4\n \n\n\n\n0.6\n \n\n\n\n0.8\n \n\n\n\n1.0\n \n\n\n0100\n \n\n\n\n100\n \n\n\n\n\nprobability\n \n", "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# pylint: disable=W0104\n", "from mindquantum.core.gates import Measure\n", "sim = Simulator('mqvector', circ.n_qubits) # 创建模拟器\n", "sim.apply_circuit(circ) # 用模拟器演化线路\n", "qs = sim.get_qs() # 获得演化得到的量子态\n", "res = sim.sampling(UN(Measure(), circ.n_qubits - 1), shots=100) # 在寄存器1中加入测量门并对线路进行100次采样,获得统计结果\n", "res.svg()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "需要注意的是,测量结果作为二进制串的读取顺序应为$|q_0q_1q_2q_3\\rangle$,因此我们得到寄存器1的测量结果为`0010`,概率幅为1,该末态可以精准地反映相位$\\varphi$。但`0010`是二进制结果,因此我们将它转回十进制后再除以$2^n$,就得到了我们最终的估计值:$\\varphi=\\frac{2}{2^4}=\\frac{1}{8}$。\n", "\n", "我们也可以通过线路演化得到的量子态 `qs` 找出第一寄存器中振幅最大值 $a_{max}$ 的位置,进而得到其对应的本征基矢 $|x\\rangle$ ,其中的 $x$ 再除以 $2^t$ 即为相位的估计值。" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10100\n" ] } ], "source": [ "index = np.argmax(np.abs(qs))\n", "print(bin(index)[2:])" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } }, "source": [ "需要注意的是,`qs` 对应的是整个量子线路的末态,因此得到的 ``index`` 也包含第二寄存器中的比特,不能直接得到第一寄存器末态中 $a_{max}$ 对应的 $|x\\rangle$ ,需要将 ``index`` 转成二进制后将 $q4$ 对应的比特位剔除,然后得到的才是第一寄存器的 $|x\\rangle$ 。" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0010\n" ] } ], "source": [ "bit_string = bin(index)[2:].zfill(circ.n_qubits)[1:] # 将index转换成01串并剔除q4\n", "bit_string = bit_string[::-1] # 将比特串顺序调整为q0q1q2q3\n", "print(bit_string)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "再将二进制转回十进制,得到我们最终的估计值。" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.125" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# pylint: disable=W0104\n", "theta_exp = int(bit_string, 2) / 2**n\n", "theta_exp" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "可见得到的估计相位和 $\\varphi$ 近似相等。" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 参考文献\n", "\n", "[1] Michael A. Nielsen and Isaac L. Chuang. [Quantum computation and quantum information](www.cambridge.org/9781107002173)" ] } ], "metadata": { "interpreter": { "hash": "6cd6e2203b621035efd3b4ac9716079b52ce7fc5622f6651a3ae71459e0d54ce" }, "kernelspec": { "display_name": "MindSpore", "language": "python", "name": "mindspore" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.5-final" } }, "nbformat": 4, "nbformat_minor": 4 }