mindquantum.algorithm.qaia.NMFA 源代码

# Copyright 2023 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Noisy Mean-field Annealing algorithm."""
# pylint: disable=invalid-name
import numpy as np
from scipy.sparse import csr_matrix

from mindquantum.utils.type_value_check import (
    _check_number_type,
    _check_value_should_between_close_set,
    _check_value_should_not_less,
)
from .QAIA import QAIA

try:
    import torch

    assert torch.cuda.is_available()
    _INSTALL_TORCH = True
except (ImportError, AssertionError):
    _INSTALL_TORCH = False

try:
    import torch
    import torch_npu

    assert torch_npu.npu.is_available()
    _INSTALL_TORCH_NPU = True
except (ImportError, AssertionError):
    _INSTALL_TORCH_NPU = False


[文档]class NMFA(QAIA): r""" Noisy Mean-field Annealing algorithm. Reference: `Emulating the coherent Ising machine with a mean-field algorithm <https://arxiv.org/abs/1806.08422>`_. Note: For memory efficiency, the input array 'x' is not copied and will be modified in-place during optimization. If you need to preserve the original data, please pass a copy using `x.copy()`. Args: J (Union[numpy.array, scipy.sparse.spmatrix]): The coupling matrix with shape (N x N). h (numpy.array): The external field with shape (N, ). x (numpy.array): The initialized spin value with shape (N x batch_size). Will be modified during optimization. If not provided (``None``), will be initialized as zeros. Default: ``None``. n_iter (int): The number of iterations. Default: ``1000``. batch_size (int): The number of sampling. Default: ``1``. alpha (float): Momentum factor. Default: ``0.15``. sigma (float): The standard deviation of noise. Default: ``0.15``. backend (str): Computation backend and precision to use: 'cpu-float32', 'gpu-float32','npu-float32'. Default: ``'cpu-float32'``. Examples: >>> import numpy as np >>> from mindquantum.algorithm.qaia import NMFA >>> J = np.array([[0, -1], [-1, 0]]) >>> solver = NMFA(J, batch_size=5) >>> solver.update() >>> print(solver.calc_cut()) [1. 1. 1. 1. 1.] >>> print(solver.calc_energy()) [-1. -1. -1. -1. -1.] """ # pylint: disable=too-many-arguments def __init__(self, J, h=None, x=None, n_iter=1000, batch_size=1, alpha=0.15, sigma=0.15, backend='cpu-float32'): """Construct NMFA algorithm.""" _check_number_type("alpha", alpha) _check_value_should_between_close_set("alpha", 0, 1, alpha) _check_number_type("sigma", sigma) _check_value_should_not_less("sigma", 0, sigma) super().__init__(J, h, x, n_iter, batch_size, backend) if self.backend == "cpu-float32": self.J = csr_matrix(self.J) if self.h is None: self.J_norm = np.sqrt(np.asarray(csr_matrix.power(self.J, 2).sum(axis=1))) else: self.J_norm = np.sqrt(np.asarray(csr_matrix.power(self.J, 2).sum(axis=1)) + self.h**2) elif self.backend == "gpu-float32": if self.h is None: self.J_norm = torch.sqrt((self.J.to_dense() ** 2).sum(dim=1, keepdim=True)) else: self.J_norm = torch.sqrt((self.J.to_dense() ** 2).sum(dim=1, keepdim=True) + self.h.pow(2)) elif self.backend == "npu-float32": if self.h is None: self.J_norm = torch.sqrt((self.J.to_dense() ** 2).sum(dim=1, keepdim=True)).npu() else: self.J_norm = torch.sqrt((self.J.to_dense() ** 2).sum(dim=1, keepdim=True) + self.h.pow(2)).npu() self.alpha = alpha self.sigma = sigma self.initialize()
[文档] def initialize(self): """Initialize spin values.""" # initialize x to zeros if self.backend == "cpu-float32": if self.x is None: self.x = np.zeros((self.N, self.batch_size)) elif self.backend == "gpu-float32": if self.x is None: self.x = torch.zeros(self.N, self.batch_size, device="cuda") else: if isinstance(self.x, np.ndarray): self.x = torch.from_numpy(self.x).float().to("cuda") elif self.backend == "npu-float32": if self.x is None: self.x = torch.zeros(self.N, self.batch_size).npu() else: if isinstance(self.x, np.ndarray): self.x = torch.from_numpy(self.x).float().to("npu") if self.x.shape[0] != self.N: raise ValueError(f"The size of x {self.x.shape[0]} is not equal to the number of spins {self.N}") # inverse temperature self.beta = 1 / self.n_iter
[文档] def update(self): """Dynamical evolution.""" if self.backend == "cpu-float32": if self.h is None: for _ in range(self.n_iter): phi = self.J.dot(self.x) / self.J_norm + np.random.normal(0, self.sigma, size=self.x.shape) x_hat = np.tanh(phi * self.beta) self.x = self.alpha * x_hat + (1 - self.alpha) * self.x self.beta += 1 / self.n_iter else: for _ in range(self.n_iter): phi = (self.J.dot(self.x) + self.h) / self.J_norm + np.random.normal( 0, self.sigma, size=self.x.shape ) x_hat = np.tanh(phi * self.beta) self.x = self.alpha * x_hat + (1 - self.alpha) * self.x self.beta += 1 / self.n_iter elif self.backend == "gpu-float32": if self.h is None: for _ in range(self.n_iter): phi = torch.sparse.mm(self.J, self.x) / self.J_norm + torch.normal( 0, self.sigma, size=self.x.shape ).to("cuda") x_hat = torch.tanh(phi * self.beta) self.x = self.alpha * x_hat + (1 - self.alpha) * self.x self.beta += 1 / self.n_iter else: for _ in range(self.n_iter): phi = (torch.sparse.mm(self.J, self.x) + self.h) / self.J_norm + torch.normal( 0, self.sigma, size=self.x.shape ).to("cuda") x_hat = torch.tanh(phi * self.beta) self.x = self.alpha * x_hat + (1 - self.alpha) * self.x self.beta += 1 / self.n_iter elif self.backend == "npu-float32": if self.h is None: for _ in range(self.n_iter): phi = torch.sparse.mm(self.J, self.x) / self.J_norm + torch.normal( 0, self.sigma, size=self.x.shape ).to("npu") x_hat = torch.tanh(phi * self.beta) self.x = self.alpha * x_hat + (1 - self.alpha) * self.x self.beta += 1 / self.n_iter else: for _ in range(self.n_iter): phi = (torch.sparse.mm(self.J, self.x) + self.h) / self.J_norm + torch.normal( 0, self.sigma, size=self.x.shape ).to("npu") x_hat = torch.tanh(phi * self.beta) self.x = self.alpha * x_hat + (1 - self.alpha) * self.x self.beta += 1 / self.n_iter