mindquantum.algorithm.qaia.CAC 源代码

# Copyright 2023 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Coherent Ising Machine with chaotic amplitude control algorithm."""
# pylint: disable=invalid-name
import numpy as np
from scipy.sparse import csr_matrix

from mindquantum.utils.type_value_check import _check_number_type, _check_value_should_not_less
from .QAIA import QAIA

try:
    import torch

    assert torch.cuda.is_available()
    _INSTALL_TORCH = True
except (ImportError, AssertionError):
    _INSTALL_TORCH = False

try:
    import torch
    import torch_npu

    assert torch_npu.npu.is_available()
    _INSTALL_TORCH_NPU = True
except (ImportError, AssertionError):
    _INSTALL_TORCH_NPU = False


[文档]class CAC(QAIA): r""" Coherent Ising Machine with chaotic amplitude control algorithm. Reference: `Coherent Ising machines with optical error correction circuits <https://onlinelibrary.wiley.com/doi/full/10.1002/qute.202100077>`_. Note: For memory efficiency, the input array 'x' is not copied and will be modified in-place during optimization. If you need to preserve the original data, please pass a copy using `x.copy()`. Args: J (Union[numpy.array, scipy.sparse.spmatrix]): The coupling matrix with shape (N x N). h (numpy.array): The external field with shape (N, ). x (numpy.array): The initialized spin value with shape (N x batch_size). Will be modified during optimization. If not provided (``None``), will be initialized as random values drawn from normal distribution N(0, 10^(-4)). Default: ``None``. n_iter (int): The number of iterations. Default: ``1000``. batch_size (int): The number of sampling. Default: ``1``. dt (float): The step size. Default: ``0.075``. backend (str): Computation backend and precision to use: 'cpu-float32', 'gpu-float32','npu-float32'. Default: ``'cpu-float32'``. Examples: >>> import numpy as np >>> from mindquantum.algorithm.qaia import CAC >>> J = np.array([[0, -1], [-1, 0]]) >>> solver = CAC(J, batch_size=5) >>> solver.update() >>> print(solver.calc_cut()) [1. 1. 1. 1. 1.] >>> print(solver.calc_energy()) [-1. -1. -1. -1. -1.] """ # pylint: disable=too-many-arguments,too-many-instance-attributes def __init__(self, J, h=None, x=None, n_iter=1000, batch_size=1, dt=0.075, backend='cpu-float32'): """Construct CAC algorithm.""" _check_number_type("dt", dt) _check_value_should_not_less("dt", 0, dt) super().__init__(J, h, x, n_iter, batch_size, backend) if self.backend == "cpu-float32": self.J = csr_matrix(self.J) self.N = self.J.shape[0] self.dt = dt # The number of first iterations self.Tr = int(0.9 * self.n_iter) # The number of additional iterations self.Tp = self.n_iter - self.Tr # pumping parameters self.p = np.hstack([np.linspace(-0.5, 1, self.Tr), np.ones(self.Tp)]) # target amplitude self.alpha = np.hstack([np.linspace(1, 3, self.Tr), 3.0 * np.ones(self.Tp)]) # coupling strength self.xi = None if self.backend == "cpu-float32": self.xi = np.sqrt(2 * self.N / np.sum(self.J**2)) if self.backend == "gpu-float32": self.xi = torch.sqrt(2 * self.N / torch.sum(self.J.to_dense() ** 2)) if self.backend == "npu-float32": self.xi = torch.sqrt( 2 * self.N / torch.tensor(csr_matrix.power(csr_matrix(self.J.cpu().numpy()), 2).sum()) ).npu() # rate of change of error variables self.beta = 0.3 self.initialize()
[文档] def initialize(self): """Initialize spin values and error variables.""" if self.backend == "cpu-float32": if self.x is None: self.x = np.random.normal(0, 10 ** (-4), size=(self.N, self.batch_size)) if self.x.shape[0] != self.N: raise ValueError(f"The size of x {self.x.shape[0]} is not equal to the number of spins {self.N}") self.e = np.ones((self.N, self.batch_size)) elif self.backend == "gpu-float32": if self.x is None: self.x = torch.normal(0, 10 ** (-4), size=(self.N, self.batch_size)).to("cuda") else: if isinstance(self.x, np.ndarray): self.x = torch.from_numpy(self.x).float().to("cuda") if self.x.shape[0] != self.N: raise ValueError(f"The size of x {self.x.shape[0]} is not equal to the number of spins {self.N}") self.e = torch.ones(self.N, self.batch_size, device="cuda") elif self.backend == "npu-float32": if self.x is None: self.x = torch.normal(0, 10 ** (-4), size=(self.N, self.batch_size)).to("npu") else: if isinstance(self.x, np.ndarray): self.x = torch.from_numpy(self.x).float().to("npu") if self.x.shape[0] != self.N: raise ValueError(f"The size of x {self.x.shape[0]} is not equal to the number of spins {self.N}") self.e = torch.ones(self.N, self.batch_size).npu()
# pylint: disable=attribute-defined-outside-init
[文档] def update(self): """Dynamical evolution.""" if self.backend == "cpu-float32": if self.h is None: for i in range(self.n_iter): self.x = ( self.x + (-self.x**3 + (self.p[i] - 1) * self.x + self.xi * self.e * (self.J @ self.x)) * self.dt ) self.e = self.e + (-self.beta * self.e * (self.x**2 - self.alpha[i])) * self.dt cond = np.abs(self.x) > (1.5 * np.sqrt(self.alpha[i])) self.x = np.where(cond, 1.5 * np.sign(self.x) * np.sqrt(self.alpha[i]), self.x) else: for i in range(self.n_iter): self.x = ( self.x + (-self.x**3 + (self.p[i] - 1) * self.x + self.xi * self.e * (self.J @ self.x + self.h)) * self.dt ) self.e = self.e + (-self.beta * self.e * (self.x**2 - self.alpha[i])) * self.dt cond = np.abs(self.x) > (1.5 * np.sqrt(self.alpha[i])) self.x = np.where(cond, 1.5 * np.sign(self.x) * np.sqrt(self.alpha[i]), self.x) elif self.backend == "gpu-float32": if self.h is None: for i in range(self.n_iter): self.x = ( self.x + (-self.x**3 + (self.p[i] - 1) * self.x + self.xi * self.e * torch.sparse.mm(self.J, self.x)) * self.dt ) self.e = self.e + (-self.beta * self.e * (self.x**2 - self.alpha[i])) * self.dt cond = torch.abs(self.x) > (1.5 * torch.sqrt(torch.tensor(self.alpha[i]))) self.x = torch.where( cond, 1.5 * torch.sign(self.x) * torch.sqrt(torch.tensor(self.alpha[i])), self.x ) else: for i in range(self.n_iter): self.x = ( self.x + ( -self.x**3 + (self.p[i] - 1) * self.x + self.xi * self.e * (torch.sparse.mm(self.J, self.x) + self.h) ) * self.dt ) self.e = self.e + (-self.beta * self.e * (self.x**2 - self.alpha[i])) * self.dt cond = torch.abs(self.x) > (1.5 * torch.sqrt(torch.tensor(self.alpha[i]))) self.x = torch.where( cond, 1.5 * torch.sign(self.x) * torch.sqrt(torch.tensor(self.alpha[i])), self.x ) elif self.backend == "npu-float32": if self.h is None: for i in range(self.n_iter): self.x = ( self.x + (-self.x**3 + (self.p[i] - 1) * self.x + self.xi * self.e * torch.sparse.mm(self.J, self.x)) * self.dt ) self.e = self.e + (-self.beta * self.e * (self.x**2 - self.alpha[i])) * self.dt cond = torch.abs(self.x) > (1.5 * torch.sqrt(torch.tensor(self.alpha[i])).npu()) self.x = torch.where( cond, 1.5 * torch.sign(self.x) * torch.sqrt(torch.tensor(self.alpha[i])).npu(), self.x ) else: for i in range(self.n_iter): self.x = ( self.x + ( -self.x**3 + (self.p[i] - 1) * self.x + self.xi * self.e * (torch.sparse.mm(self.J, self.x) + self.h) ) * self.dt ) self.e = self.e + (-self.beta * self.e * (self.x**2 - self.alpha[i])) * self.dt cond = torch.abs(self.x) > (1.5 * torch.sqrt(torch.tensor(self.alpha[i])).npu()) self.x = torch.where( cond, 1.5 * torch.sign(self.x) * torch.sqrt(torch.tensor(self.alpha[i])).npu(), self.x )