Source code for mindquantum.algorithm.qaia.LQA

# Copyright 2023 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""".Local quantum annealing algorithm."""
# pylint: disable=invalid-name
import numpy as np
from scipy.sparse import csr_matrix

from mindquantum.utils.type_value_check import (
    _check_number_type,
    _check_value_should_not_less,
    _check_value_should_between_close_set,
)
from .QAIA import QAIA


[docs]class LQA(QAIA): r""" Local quantum annealing algorithm. Reference: `Quadratic Unconstrained Binary Optimization via Quantum-Inspired Annealing <https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.18.034016>`_. Note: For memory efficiency, the input array 'x' is not copied and will be modified in-place during optimization. If you need to preserve the original data, please pass a copy using `x.copy()`. Args: J (Union[numpy.array, scipy.sparse.spmatrix]): The coupling matrix with shape (N x N). h (numpy.array): The external field with shape (N, ). x (numpy.array): The initialized spin value with shape (N x batch_size). Will be modified during optimization. If not provided (``None``), will be initialized as random values uniformly distributed in [-0.1, 0.1]. Default: ``None``. n_iter (int): The number of iterations. Default: ``1000``. batch_size (int): The number of sampling. Default: ``1``. dt (float): The step size. Default: ``1``. gamma (float): The coupling strength. Default: ``0.1``. momentum (float): Momentum factor. Default: ``0.99``. Examples: >>> import numpy as np >>> from mindquantum.algorithm.qaia import LQA >>> J = np.array([[0, -1], [-1, 0]]) >>> solver = LQA(J, batch_size=5) >>> solver.update() >>> print(solver.calc_cut()) [1. 1. 1. 1. 1.] >>> print(solver.calc_energy()) [-1. -1. -1. -1. -1.] """ # pylint: disable=too-many-arguments def __init__( self, J, h=None, x=None, n_iter=1000, batch_size=1, gamma=0.1, dt=1.0, momentum=0.99, ): """Construct LQA algorithm.""" _check_number_type("gamma", gamma) _check_value_should_not_less("gamma", 0, gamma) _check_number_type("dt", dt) _check_value_should_not_less("dt", 0, dt) _check_number_type("momentum", momentum) _check_value_should_between_close_set("momentum", 0, 1, momentum) super().__init__(J, h, x, n_iter, batch_size) self.J = csr_matrix(self.J) self.gamma = gamma self.dt = dt self.momentum = momentum self.initialize()
[docs] def initialize(self): """Initialize spin values.""" if self.x is None: self.x = 0.2 * (np.random.rand(self.N, self.batch_size) - 0.5) if self.x.shape[0] != self.N: raise ValueError(f"The size of x {self.x.shape[0]} is not equal to the number of spins {self.N}")
[docs] def update(self, beta1=0.9, beta2=0.999, epsilon=10e-8): """ Dynamical evolution with Adam. Args: beta1 (float): Beta1 parameter. Default: ``0.9``. beta2 (float): Beta2 parameter. Default: ``0.999``. epsilon (float): Epsilon parameter. Default: ``10e-8``. """ m_dx = 0 v_dx = 0 for i in range(1, self.n_iter): t = i / self.n_iter tmp = np.pi / 2 * np.tanh(self.x) z = np.sin(tmp) y = np.cos(tmp) if self.h is None: dx = np.pi / 2 * (-t * self.gamma * self.J.dot(z) * y + (1 - t) * z) * (1 - np.tanh(self.x) ** 2) else: dx = ( np.pi / 2 * (-t * self.gamma * (self.J.dot(z) + self.h) * y + (1 - t) * z) * (1 - np.tanh(self.x) ** 2) ) # momentum beta1 m_dx = beta1 * m_dx + (1 - beta1) * dx # rms beta2 v_dx = beta2 * v_dx + (1 - beta2) * dx**2 # bias correction m_dx_corr = m_dx / (1 - beta1**i) v_dx_corr = v_dx / (1 - beta2**i) self.x = self.x - self.dt * m_dx_corr / (np.sqrt(v_dx_corr) + epsilon)