# Migrating From Third Party Frameworks With MindConverter [![View Source On Gitee](https://gitee.com/mindspore/docs/raw/r1.5/resource/_static/logo_source_en.png)](https://gitee.com/mindspore/docs/blob/r1.5/docs/mindinsight/docs/source_en/migrate_3rd_scripts_mindconverter.md) ## Overview MindConverter is a migration tool to transform the model file of PyTorch(ONNX) or TensorFlow(PB) to MindSpore. The model file contains model structure definition(`network`) and weights information(`weights`), which will be transformed into model scripts(`model.py`) and weights file(`ckpt`) in MindSpore. ![mindconverter-overview](images/mindconverter-overview.png) ## Quick Starts MindConverter is a sub-module in MindInsight. Please refer to the [installation guide](https://www.mindspore.cn/mindinsight/docs/en/r1.5/mindinsight_install.html) of MindInsight. The basic usage of MindConverter CLI is as follows. For more CLI arguments, please refer to [MindConverter CLI Usage](#mindconverter-cli-usage). ```shell mindconverter --model_file /path/to/model_file --shape SHAPE --input_nodes INPUTS --output_nodes OUTPUTS ``` - `--model_file` specifies the path of model file, the model file supports `onnx` format or `pb` format. - `--shape` specifies the input shape of model. Multiple inputs are separated by space. - `--input_nodes` specifies the input names of model. Multiple inputs are separated by space. - `--output_nodes` specifies the output names of model. Multiple outputs are separated by space. - Output files are generated and saved under `$PWD/output` by default. ## Install Dependencies The following dependencies are required for MindConverter usage and suggested to be installed under the x86 environment. Refer to [installation](#install-dependencies-under-arm) under the ARM environment. ```shell # Corresponding version of MindSpore is required(e.g. r1.2). pip install mindspore~=1.2.0 # ONNX and relevant libraries are required. pip install onnx~=1.8.0 pip install onnxoptimizer~=0.1.2 pip install onnxruntime~=1.5.2 # tf2onnx is required if model file is in pb format. pip install tf2onnx~=1.7.1 ``` ## Migration Solution A typical model project contains 4 main components. Tips for migrating each component are as follows: - Model definition(`model.py`) 1. Transform the model structure with MindConverter CLI. 2. Manually enhance the readability of the generated model scripts(Optional). 3. Mix the generated model with the original project to validate equivalence of the migration. Refer to [FAQ](#mix-the-mindspore-model-into-the-original-training-script). - Data processing(`dataset.py`) 1. For a built-in dataset, please query [API mapping](https://www.mindspore.cn/docs/migration_guide/en/r1.5/api_mapping/pytorch_api_mapping.html) for migration. 2. For a customized dataset and data augmentation, please refer to [the migration template](#step-2-migrate-the-data-processing). - Model training(`train.py`) 1. The loss function(`loss_fn`) can be migrated by querying [API mapping](https://www.mindspore.cn/docs/migration_guide/en/r1.5/api_mapping/pytorch_api_mapping.html) or user's implementation. 2. The optimizer(`optimizer`) can be migrated by querying [API mapping](https://www.mindspore.cn/docs/migration_guide/en/r1.5/api_mapping/pytorch_api_mapping.html) or user's implementation. 3. As the training codes could be flexible and significantly different from MindSpore, implementation by the users is recommended. Please refer to [FAQ](#step-3-migrate-the-model-training). - Model evaluation(`eval.py`) 1. The metric(`metric`) can be migrated by querying [API mapping](https://www.mindspore.cn/docs/migration_guide/en/r1.5/api_mapping/pytorch_api_mapping.html) or user's implementation. 2. As the evaluation codes could be flexible and significantly different from MindSpore, implementation by the users is recommended. Please refer to [FAQ](#step-4-migrate-the-model-evaluation). ## Practice Guidance ### Step 0:Export the model file Exporting ONNX model file from PyTorch model(refer to [FAQ](#export-the-model-file-of-tensorflow) for Tensorflow guidance) requires operators mapping between [PyTorch](https://pytorch.org/docs/stable/onnx.html#supported-operators) and [ONNX](https://github.com/onnx/onnx/blob/master/docs/Operators.md#). Guidance is as follows: 1. Download source codes, weights file and relevant dataset files of the model project. 2. Dive into the model definition. Make sure that all parameters of the `forward` function are Tensor type. Please refer to [FAQ](#rectify-parameters-of-forward-function-definition). 3. Locate the model object and the input shape information from the model evaluation. Export the model object into onnx format. ```python import torch from project.model import Model as PyTorchModel model = PyTorchModel() input_shape = (1, 3, 224, 224) input_tensor = torch.randn(*input_shape) torch.onnx.export(model, input_tensor, '/path/to/model.onnx') ``` 4. Validate the equivalence onnx model file against the original scripts. ```python import onnxruntime import numpy as np session = onnxruntime.InferenceSession('/path/to/model.onnx') input_node = session.get_inputs()[0] output = session.run(None, {input_node.name: np.load('/path/to/input.npy')}) np.allclose(output, np.load('/path/to/output.npy')) ``` ### Step 1:Migrate the model definition Run the following MindConverter CLI to generate the model scripts(`model.py`), weights information(`ckpt`), [migration reports and weights mapping](#migration-reports-and-weights-mapping). ```shell mindconverter --model_file /path/to/model.onnx \ --shape 1,3,224,224 \ --input_nodes input_node_name \ --output_nodes output_node_name ``` To migrate ONNX model file, you need to specify the model input shape, input node names and output node names. [Netron](https://github.com/lutzroeder/netron) is recommended to get the above information. Model scripts(`model.py`) and weights information(`ckpt`) can be used not only to validate the equivalence of migration, but also to generate the [MindIR](https://www.mindspore.cn/docs/programming_guide/en/r1.5/save_model.html#mindir) file. ```python import mindspore import numpy as np from project.model import Network as MindSporeNetwork network = MindSporeNetwork() param_dict = mindspore.load_checkpoint('network.ckpt') mindspore.load_param_into_net(network, param_dict) input_data = mindspore.Tensor(np.load('/path/to/input.npy')) output_benchmark = mindspore.Tensor(np.load('/path/to/output.npy')) # Validate the equivalence of migration. output_data = network(input_data) np.allclose(output_data, output_benchmark) # Generate the MindIR file. mindspore.export(network, input_data, file_name='network_name', file_format='MINDIR') ``` Note 1. The Dropout operator will be lost after conversion because the inference mode is used to load the ONNX or TensorFlow model. Manually re-implementation is necessary. 2. This script conversion tool relies on operators which supported by MindConverter and MindSpore. Unsupported operators may not be successfully mapped to MindSpore operators. You can manually edit, or implement the mapping based on MindConverter, and make [contribution](https://gitee.com/mindspore/mindinsight/blob/r1.5/mindinsight/mindconverter/tutorial/add_operator_mapper_base_tutorial.ipynb) to our MindInsight repository. We appreciate your support for the MindSpore community. 3. MindConverter converts dynamic input shape to constant one based on `--shape` while using graph based scheme, as a result, it is required that inputs’ shape used to retrain or inference in MindSpore are the same as that used to convert using MindConverter. If the input shape has changed, please running MindConverter again with new `--shape` or fixing shape related parameters in the old script. 4. MindSpore script and MindSpore checkpoint file are saved in the one file folder path, while report file and weight map file are saved in the other one. 5. The security and consistency of the model file should be guaranteed by the user. ### Step 2:Migrate the data processing For a built-in dataset, please query [API mapping](https://www.mindspore.cn/docs/migration_guide/en/r1.5/api_mapping/pytorch_api_mapping.html) for migration. For a customized dataset and data augmentation, self implementation is recommended. For more data processing migration, please refer to [the programming guidance](https://www.mindspore.cn/docs/programming_guide/en/r1.5/dataset_sample.html). Source codes with PyTorch framework are as follows: ```python from torch.utils.data import Dataset, DataLoader from torchvision import transforms class CustomDataset(Dataset): def __init__(self, *args, **kwargs): self.records = [...] self.labels = [...] # Define data augmentation. self.transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), ]) def __len__(self): return len(self.labels) def __getitem__(self, idx): # Execute data augmentation. data = self.transform(self.records[idx]) return data, self.labels[idx] dataset = CustomDataset(*args, **kwargs) data_loader = DataLoader(dataset, batch_size=BATCH_SIZE) ``` Corresponding generated codes with MindSpore framework are as follows: ```python from mindspore.dataset import GeneratorDataset from mindspore.dataset.vision import py_transforms as transforms class CustomGenerator: def __init__(self, *args, **kwargs): self.records = [...] self.labels = [...] # Define data augmentation. self.transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), ]) def __len__(self): return len(self.labels) def __getitem__(self, idx): # Execute data augmentation. data = self.transform(self.records[idx]) return data, self.labels[idx] generator = CustomGenerator(*args, **kwargs) dataset = GeneratorDataset(generator, column_names=['data', 'label']).batch(BATCH_SIZE) ``` ### Step 3:Migrate the model training The loss function(`loss_fn`) can be migrated by querying [API mapping](https://www.mindspore.cn/docs/migration_guide/en/r1.5/api_mapping/pytorch_api_mapping.html) or user's implementation. For more loss function migration, please refer to [the programming guidance](https://www.mindspore.cn/docs/programming_guide/en/r1.5/loss.html). The optimizer(`optimizer`) can be migrated by querying [API mapping](https://www.mindspore.cn/docs/migration_guide/en/r1.5/api_mapping/pytorch_api_mapping.html) or user's implementation. For more optimizer migration, please refer to [the programming guidance](https://www.mindspore.cn/docs/programming_guide/en/r1.5/optim.html). As the training codes could be flexible and significantly different from MindSpore, implementation by the users is recommended. Source codes with PyTorch framework are as follows: ```python import torch from project.model import Network as PyTorchNetwork # Create a instance of network model. network = PyTorchNetwork() # Define optimizer and learning rate. optimizer = torch.optim.SGD(network.parameters(), lr=LEARNING_RATE) scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer) # Launch the model training. for i in range(EPOCH_SIZE): for data, label in data_loader: optimizer.zero_grad() output = network(data) loss = loss_fn(output, label) loss.backward() optimizer.step() scheduler.step() ``` Corresponding generated codes(Low-Level API) with MindSpore framework are as follows: ```python from mindspore import nn from project.model import Network as MindSporeNetwork # Create a instance of network model. network = MindSporeNetwork() # Define learning rate and optimizer. scheduler = nn.ExponentialDecayLR(LEARNING_RATE) optimizer = nn.SGD(params=network.trainable_params(), learning_rate=scheduler) # Launch the model training. net_with_loss = nn.WithLossCell(network, loss_fn) train_network = nn.TrainOneStepCell(net_with_loss, optimizer) train_network.set_train() data_iterator = dataset.create_tuple_iterator(num_epochs=EPOCH_SIZE) for i in range(EPOCH_SIZE): for data, label in data_iterator: loss = train_network(data, label) ``` Corresponding generated codes(High-Level API) with MindSpore framework are as follows: ```python from mindspore import nn from mindspore import Model from project.model import Network as MindSporeNetwork # Create a instance of network model. network = MindSporeNetwork() # Define learning rate and optimizer. scheduler = nn.ExponentialDecayLR(LEARNING_RATE) optimizer = nn.SGD(params=network.trainable_params(), learning_rate=scheduler) # Launch the model training. model = Model(network, loss_fn=loss_fn, optimizer=optimizer) model.train(EPOCH_SIZE, dataset) ``` ### Step 4:Migrate the model evaluation The metric(`metric`) can be migrated by querying [API mapping](https://www.mindspore.cn/docs/migration_guide/en/r1.5/api_mapping/pytorch_api_mapping.html) or user's implementation. As the evaluation codes could be flexible and significantly different from MindSpore, implementation by the users is recommended. For more model evaluation migration, please refer to [the programming guidance](https://www.mindspore.cn/docs/programming_guide/en/r1.5/multi_platform_inference_ascend_910.html). Source codes with PyTorch framework are as follows: ```python from project.model import Network as PyTorchNetwork network = PyTorchNetwork() for data, label in data_loader: output = network(data) loss = loss_fn(output, label) ``` Corresponding generated codes(Low-Level API) with MindSpore framework are as follows: ```python from mindspore import Model from project.model import Network as MindSporeNetwork network = MindSporeNetwork() data_iterator = dataset.create_tuple_iterator() for data, label in data_iterator: output = network(data) loss = loss_fn(output, label) ``` Corresponding generated codes(High-Level API) with MindSpore framework are as follows: ```python from mindspore import Model from project.model import Network as MindSporeNetwork network = MindSporeNetwork() model = Model(network, loss_fn=loss_fn) model.eval(dataset) ``` ## MindConverter CLI Usage ```shell usage: mindconverter [-h] [--version] [--model_file MODEL_FILE] [--shape SHAPE [SHAPE ...]] [--input_nodes INPUT_NODES [INPUT_NODES ...]] [--output_nodes OUTPUT_NODES [OUTPUT_NODES ...]] [--output OUTPUT] [--report REPORT] ``` Arguments are as follows: | Argument | Mandatory | Description | Type | Default | Example | | -------------- | :--: | ------------------------------------------- | :----: | :----: | :-------------------: | | -h, --help | N | Show the help message. | - | - | - | | --version | N | Show the version info. | - | - | - | | --model_file | Y | Specify the path of model file. | String | - | /path/to/model.onnx | | --shape | Y | Specify the input shape of model. Multiple inputs are separated by space. | String | - | 1,3,224,224 | | --input_nodes | Y | Specify the input names of model. Multiple inputs are separated by space. | String | - | input_1:0 | | --output_nodes | Y | Specify the output names of model. Multiple outputs are separated by space. | String | - | output_1:0 output_2:0 | | --output | N | Specify the directory path for generated files. | String | $PWD | /path/to/output/dir | | --report | N | Specify the directory path for migration reports. | String | $PWD | /path/to/report/dir | ## Model List Supported by MindConverter For supported models (tested based on PyTorch 1.5.0 and TensorFlow 1.15.0, x86 Ubuntu released version), please refer to [LINK](https://gitee.com/mindspore/mindinsight/blob/r1.5/mindinsight/mindconverter/docs/supported_model_list.md#). ## MindConverter Error Code Definition For error code defined in MindConverter, please refer to [LINK](https://gitee.com/mindspore/mindinsight/blob/r1.5/mindinsight/mindconverter/docs/error_code_definition.md#). ## FAQ ### Install dependencies under ARM MindConverter under the ARM environment requires compiling `protobuf`/`onnx`/`onnxoptimizer` from scratch. Since the compiling is complicated and error prone, we strongly recommend to use MindConverter under the x86 environment. 1. Compile `protobuf`(refer to [ONNX](https://github.com/onnx/onnx)) and install cpp backend. ```shell # build, compile and install protobuf git clone https://github.com/protocolbuffers/protobuf.git cd protobuf git checkout v3.16.0 git submodule update --init --recursive mkdir build_source cd build_source cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr/local/protobuf -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release make -j$(nproc) make install # Install cpp backend. cd ../python python setup.py install --cpp_implementation ``` 2. Configure environment variables for `protobuf`. ```shell export PROTOBUF_PATH=/usr/local/protobuf export PATH=$PROTOBUF_PATH/bin:$PATH export PKG_CONFIG_PATH=$PROTOBUF_PATH/lib/pkgconfig export LD_LIBRARY_PATH=$PROTOBUF_PATH/lib:$LD_LIBRARY_PATH export LIBRARY_PATH=$PROTOBUF_PATH/lib:$LIBRARY_PATH export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=cpp ``` 3. Validate cpp backend of `protobuf`. ```python from google.protobuf.internal import api_implementation print(api_implementation.Type()) ``` 4. `onnx` should be recompiled and installed to guarantee running `onnx` with `protobuf` built by static library. Please refer to [the installation guidance](https://github.com/onnx/onnx). ```shell git clone https://github.com/onnx/onnx.git cd onnx git submodule update --init --recursive # prefer lite proto set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON pip install -e . ``` 5. Compile and install `onnxoptimizer`. Please refer to [the installation guidance](https://github.com/onnx/optimizer). ```shell git clone --recursive https://github.com/onnx/optimizer onnxoptimizer cd onnxoptimizer pip3 install -e . ``` 6. Install `onnxruntime`. ```shell pip install onnxruntime~=1.5.2 ``` ### Export the model file of Tensorflow Exporting the PB model file from a Tensorflow model requires operators mapping between [Tensorflow](https://github.com/onnx/tensorflow-onnx/blob/master/support_status.md#) and [ONNX](https://github.com/onnx/onnx/blob/master/docs/Operators.md#). For models defined by Keras, guidance is as follows: TensorFlow 1.x ```python import tensorflow as tf from tensorflow.python.framework import graph_io from tensorflow.python.keras.applications.inception_v3 import InceptionV3 model = InceptionV3() INPUT_NODES = [ipt.op.name for ipt in model.inputs] OUTPUT_NODES = [opt.op.name for opt in model.outputs] tf.keras.backend.set_learning_phase(0) session = tf.keras.backend.get_session() with session.graph.as_default(): graph_inf = tf.graph_util.remove_training_nodes(session.graph.as_graph_def()) graph_frozen = tf.graph_util.convert_variables_to_constants(session, graph_inf, OUTPUT_NODES) graph_io.write_graph(graph_frozen, logdir="/path/to/output/dir", name="model.pb", as_text=False) print(f"Input nodes name: {INPUT_NODES}, output nodes name: {OUTPUT_NODES}") ``` TensorFlow 2.x ```python import tensorflow as tf from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 from tensorflow.keras.applications import InceptionV3 model = InceptionV3() spec = tf.TensorSpec(model.inputs[0].shape, model.inputs[0].dtype) full_model = tf.function(lambda x: model(x)).get_concrete_function(spec) frozen_func = convert_variables_to_constants_v2(full_model) frozen_func.graph.as_graph_def() tf.io.write_graph(frozen_func.graph, logdir="/path/to/output/dir", name="model.pb", as_text=False) ``` TensorFlow is required for exporting PB model file but it is not explicitly declared as mandatory dependency for MindInsight. If the user wants to use graph based MindConverter, please install TensorFlow(TensorFlow 1.15.x is recommended). ### Rectify parameters of forward function definition Some models define non-Tensor parameters within forward function are as follows: ```python class Model(nn.Cell): def __init__(self, *args, **kwargs): self.op = Operator() self.loss_fn = LossFunction() def forward(self, data, label): output = self.op(data) loss = self.loss_fn(output, label) return output, loss ``` The above `label` is a non-Tensor parameter which needs to be rectified. ```python class Model(nn.Cell): def __init__(self, *args, **kwargs): self.op = Operator() def forward(self, data): output = self.op(data) return output ``` ### Mix the MindSpore model with the original training scripts Validate the equivalence of migration by mixing the MindSpore model and weights with the PyTorch training scripts. ```python import torch from torch.utils.data import DataLoader import mindspore from project.model import Network as MindSporeNetwork network = MindSporeNetwork() param_dict = mindspore.load_checkpoint('network.ckpt') mindspore.load_param_into_net(network, param_dict) data_loader = DataLoader(dataset, batch_size=BATCH_SIZE) for data, label in data_loader: ms_data = mindspore.Tensor(data.numpy()) ms_output = network(ms_data) output = torch.Tensor(ms_output.asnumpy()) loss = loss_fn(output, label) ``` ### Migration reports and weights mapping For operators that are not successfully converted, the conversion report records the unconverted code lines and operator information, and at the same time identifies the input/output shape of the node in the code (represented as `input_shape` and `output_shape`), which is convenient for users to modify manually. An example of the `Reshape` operator is as follows: ```python class Classifier(nn.Cell): def __init__(self): super(Classifier, self).__init__() self.reshape = onnx.Reshape(input_shape=(1, 1280, 1, 1), output_shape=(1, 1280)) def construct(self, x): # Suppose input of `reshape` is x. reshape_output = self.reshape(x) # skip codes ... ``` It is convenient to replace the operators according to the `input_shape` and `output_shape` parameters. The replacement is like this: ```python from mindspore import ops class Classifier(nn.Cell): def __init__(self): super(Classifier, self).__init__() self.reshape = ops.Reshape(input_shape=(1, 1280, 1, 1), output_shape=(1, 1280)) def construct(self, x): # Suppose input of `reshape` is x. reshape_output = self.reshape(x, (1, 1280)) # skip codes ... ``` Weight information in MindSpore(`converted_weight`) and that in source framework(`source_weight`) are saved in weight mapping. An example is as follows: ```json { "resnet50": [ { "converted_weight": { "name": "conv2d_0.weight", "shape": [64, 3, 7, 7], "data_type": "Float32" }, "source_weight": { "name": "conv1.weight", "shape": [64, 3, 7, 7], "data_type": "float32" } } ] } ``` ### AST-Based Model Migration MindConverter supports AST-based model migration for PyTorch scripts. It parses and analyzes original scripts, then replaces them with the MindSpore AST to generate codes. > Since the result may differ due to the coding style of original scripts, AST-based model migration is now DEPRECATED and will be removed in r2.0. Assume the PyTorch script is located at `/path/to/model.py`, and outputs the transformed MindSpore script to `/path/to/output/dir`. Use the following command: ```bash mindconverter --in_file /path/to/model.py --output /path/to/output/dir ``` In the conversion report, non-converted code is listed as follows. `x, y` indicates the line number and the column number of the original scripts. For non-converted operators, please refer to [MindSpore API mapping](https://www.mindspore.cn/docs/migration_guide/en/r1.5/api_mapping/pytorch_api_mapping.html). For unsupported operators, the corresponding code lines will remain in the original way. ```text line x:y: [UnConvert] 'operator' didn't convert. ... ``` For non-converted operators, suggestions are provided in the report. For example, MindConverter suggests that replace `torch.nn.AdaptiveAvgPool2d` with `mindspore.ops.ReduceMean` in `line 157:23`. ```text [Start Convert] [Insert] 'from mindspore import ops' is inserted to the converted file. line 1:0: [Convert] 'import torch' is converted to 'import mindspore'. ... line 157:23: [UnConvert] 'nn.AdaptiveAvgPool2d' didn't convert. Maybe could convert to mindspore.ops.ReduceMean. ... [Convert Over] ``` The following cases are not supported: 1. Specific classes and functions. - `torch.Tensor` members, including `shape`,`ndim` and `dtype` - `torch.nn.AdaptiveXXXPoolXd` and `torch.nn.functional.adaptive_XXX_poolXd()` - `torch.nn.functional.Dropout` - `torch.unsqueeze()` and `torch.Tensor.unsqueeze()` - `torch.chunk()` and `torch.Tensor.chunk()` 2. Subclasses of `nn.Module`. ```python # Code snippets from torchvision.models.mobilenet from torch import nn class ConvBNReLU(nn.Sequential): def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): padding = (kernel_size - 1) // 2 super(ConvBNReLU, self).__init__( nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False), nn.BatchNorm2d(out_planes), nn.ReLU6(inplace=True) ) ```