mindformers.models.glm2.glm2_config 源代码

# Copyright 2023-2024 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""ChatGLM2 config"""

from typing import Union

from mindspore._checkparam import args_type_check

from mindformers.tools.register import MindFormerRegister, MindFormerModuleType
from mindformers.modules.transformer.transformer import default_transformer_config, TransformerOpParallelConfig
from mindformers.models.configuration_utils import PretrainedConfig
from mindformers.models.utils import convert_mstype

__all__ = ['ChatGLM2Config']


[文档]@MindFormerRegister.register(MindFormerModuleType.CONFIG) class ChatGLM2Config(PretrainedConfig): """ ChatGLM2 model config class which defines the model size. Args: batch_size (int, optional): Batch size for input data, use in predict. Default: ``1``. num_layers (int, optional): Number of hidden layers in the Transformer encoder. Default: ``28``. padded_vocab_size (int, optional): Vocabulary size of the ChatGLM2 model. Default: ``65024``. hidden_size (int, optional): Dimensionality of the hidden layers. Default: ``4096``. ffn_hidden_size (int, optional): Dimensionality of the ffn layer. Default: ``13696``. kv_channels (int, optional): The number of channels for key and value vectors in the transformer. Default: ``128``. num_attention_heads (int, optional): The number of attention heads for each attention layer. Default: ``32``. seq_length (int, optional): The sequence length of input_ids, default is 2048. Default: ``2048``. hidden_dropout (float, optional): The dropout ratio of the dropout function. Default: ``0.0``. attention_dropout (float, optional): The dropout ratio for the attention matrix. Default: ``0.0``. layernorm_epsilon (float, optional): The ϵ value added to prevent the denominator from being zero when computing layer normalization. Default: ``1e-5``. rope_ratio (float, optional): RoPE rotation coefficient. Default: ``1``. rmsnorm (bool, optional): Whether to use rmsnorm. Default: ``True``. apply_residual_connection_post_layernorm (bool, optional): Whether apply the residual connection to post layernorm. Default: ``False``. post_layer_norm (bool, optional): Whether to use layer normalization after the ffn layer. Default: ``True``. add_bias_linear (bool, optional): Whether to add bias to the linear layer. Default: ``False``. add_qkv_bias (bool, optional): Whether to add bias for qkv. Default: ``True``. bias_dropout_fusion (bool, optional): Whether to add bias, dropout, and fusion operations. Default: ``True``. multi_query_attention (bool, optional): Whether to use multi query attention. Default: ``True``. multi_query_group_num (int, optional): Define multi group head attention heads number. Default: ``2``. apply_query_key_layer_scaling (bool, optional): Whether scaling the query_key layer. Default: ``True``. attention_softmax_in_fp32 (bool, optional): Whether apply fp32 to the attention softmax. Default: ``True``. fp32_residual_connection (bool, optional): Whether apply fp32 to residual connection layer. Default: ``False``. quantization_bit (int, optional): Weight and number of activation bits. Default: ``0``. pre_seq_len (int, optional): Length of the input sequence that can be learned. Default: ``None``. prefix_projection (bool, optional): Add a projection layer before a sequence. Default: ``False``. param_init_type (str, optional): Parameter initial dtype. Default: ``float16``. compute_dtype (str, optional): Linear layer compute dtype. Default: ``float16``. layernorm_compute_type (str, optional): LayerNorm compute dtype. Default: ``float32``. residual_dtype (str, optional): Residual compute dtype. Default: ``float32``. rotary_dtype (str, optional): Custom rotary position embedding compute dtype. Default: ``None``. use_past (bool, optional): Whether the model should use the past last key/values attentions (if applicable to the model) to speed up decoding. Default: ``False``. use_flash_attention (bool, optional): Whether enable flash attention ops, default False. Default: ``False``. enable_high_performance (bool, optional): Whether to adjust parallel strategies of qkv and ffn, in order to get high performance. Default: ``False``. block_size (int, optional): The maximum number of tokens in one block can have when using PagedAttention. Default: ``16``. num_blocks (int, optional): The maximum number of blocks when using PagedAttention. Default: ``128``. is_dynamic (bool, optional): Whether to use dynamic diagram mode. Default: ``False``. eos_token_id (int, optional): The token id of the *end-of-sequence* token. Default: ``2``. pad_token_id (int, optional): In multi-batch inference, the token id value used to pad shorter sequences to match the length of the longest sequence. Default: ``0``. gmask_token_id (int, optional): A special token representing a gmask token. Default: ``None``. bos_token_id (int, optional): The id of the *beginning-of-sequence* token. Default: ``None``. repetition_penalty (float, optional): The parameter for repetition penalty. 1.0 means no penalty. Default: ``1.0``. checkpoint_name_or_path (str, optional): Checkpoint path or name used to load to the network. Default: ``None``. parallel_config (TransformerOpParallelConfig, optional): The parallel configure. an instance of `TransformerOpParallelConfig` with default args. Default: ``TransformerOpParallelConfig``. offset (int, optional): The layer offset for each (mini) stage. Default: ``0``. pp_interleave_num (int, optional): Number of microbatch interleavings in pipeline parallelism. Default: ``1``. mlp_concat (bool, optional): Whether to concatenate two mlp to one Linear. Default: ``True``. qkv_concat (bool, optional): Whether to concatenate query key and value Linear calculation to one entire Linear. Default: ``True``. use_rearrange_rope (bool, optional): Whether to use rearranged rotary embedding. Default: ``False``. mask_generate (str, optional): Which mask generation to use, which can be "inmap", "compress_reset", None. When set as None, lower triangular mask is used. Default: ``None``. fine_grain_interleave (int, optional): Number of slices for fine grain interleave feature, which covers communication time with computation time in tensor parallel case. Default: ``1``. use_ring_attention (bool, optional): Whether enable ring attention ops. Default: ``False``. post_self_attn_layernorm (bool, optional): Whether to use layer normalization after self-attention module in transformer block. Default: ``False``. post_mlp_layernorm (bool, optional): Whether to use layer normalization after mlp module in transformer block. Default: ``False``. kwargs (dict, optional): A variable number of keyword parameters reserved for the keyword parameters to be expanded. Returns: An instance of ChatGLM2Config. Examples: >>> from mindformers.models import ChatGLM2Config >>> config = ChatGLM2Config(num_layers=2, seq_length=1024) >>> print(config.num_layers) 2 >>> print(config.seq_length) 1024 """ model_type = "glm2" _support_list = [] @args_type_check(parallel_config=(dict, TransformerOpParallelConfig)) def __init__(self, batch_size: int = 1, num_layers: int = 28, padded_vocab_size: int = 65024, hidden_size: int = 4096, ffn_hidden_size: int = 13696, kv_channels: int = 128, num_attention_heads: int = 32, seq_length: int = 2048, hidden_dropout: float = 0.0, attention_dropout: float = 0.0, layernorm_epsilon: float = 1e-5, rope_ratio: float = 1, rmsnorm: bool = True, apply_residual_connection_post_layernorm: bool = False, post_layer_norm: bool = True, add_bias_linear: bool = False, add_qkv_bias: bool = True, bias_dropout_fusion: bool = True, multi_query_attention: bool = True, multi_query_group_num: int = 2, apply_query_key_layer_scaling: bool = True, attention_softmax_in_fp32: bool = True, fp32_residual_connection: bool = False, quantization_bit: int = 0, pre_seq_len: int = None, prefix_projection: bool = False, param_init_type: str = "float16", compute_dtype: str = "float16", layernorm_compute_type: str = "float32", residual_dtype: str = "float32", rotary_dtype: str = None, use_past: bool = False, use_flash_attention: bool = False, enable_high_performance: bool = False, block_size: int = 16, num_blocks: int = 128, is_dynamic: bool = False, eos_token_id: int = 2, pad_token_id: int = 0, gmask_token_id: int = None, bos_token_id: int = None, repetition_penalty: float = 1.0, checkpoint_name_or_path: str = None, parallel_config: Union[dict, TransformerOpParallelConfig] = default_transformer_config, offset: int = 0, pp_interleave_num: int = 1, mlp_concat: bool = True, qkv_concat: bool = True, use_rearrange_rope: bool = False, mask_generate: str = None, fine_grain_interleave: int = 1, use_ring_attention: bool = False, post_self_attn_layernorm: bool = False, post_mlp_layernorm: bool = False, **kwargs): super().__init__(**kwargs) if isinstance(parallel_config, dict): parallel_config = TransformerOpParallelConfig(**parallel_config) self.batch_size = batch_size self.num_layers = num_layers self.vocab_size = padded_vocab_size self.padded_vocab_size = padded_vocab_size self.hidden_size = hidden_size self.ffn_hidden_size = ffn_hidden_size self.kv_channels = kv_channels self.num_attention_heads = num_attention_heads self.seq_length = seq_length self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.layernorm_epsilon = layernorm_epsilon self.rope_ratio = rope_ratio self.rmsnorm = rmsnorm self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm self.post_layer_norm = post_layer_norm self.add_bias_linear = add_bias_linear self.add_qkv_bias = add_qkv_bias self.bias_dropout_fusion = bias_dropout_fusion self.multi_query_attention = multi_query_attention self.multi_query_group_num = multi_query_group_num self.apply_query_key_layer_scaling = apply_query_key_layer_scaling self.attention_softmax_in_fp32 = attention_softmax_in_fp32 self.fp32_residual_connection = fp32_residual_connection self.quantization_bit = quantization_bit self.pre_seq_len = pre_seq_len self.prefix_projection = prefix_projection self.param_init_type = convert_mstype(param_init_type) self.compute_dtype = convert_mstype(compute_dtype) self.layernorm_compute_type = convert_mstype(layernorm_compute_type) self.residual_dtype = convert_mstype(residual_dtype) self.rotary_dtype = convert_mstype(rotary_dtype) if rotary_dtype is not None else self.compute_dtype self.use_past = use_past self.use_flash_attention = use_flash_attention self.enable_high_performance = enable_high_performance self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.repetition_penalty = repetition_penalty self.parallel_config = parallel_config self.checkpoint_name_or_path = checkpoint_name_or_path self.gmask_token_id = gmask_token_id self.bos_token_id = bos_token_id self.block_size = block_size self.num_blocks = num_blocks self.is_dynamic = is_dynamic self.num_heads = self.num_attention_heads self.n_kv_heads = self.multi_query_group_num if self.multi_query_attention else None self.offset = offset self.pp_interleave_num = pp_interleave_num self.mlp_concat = mlp_concat self.qkv_concat = qkv_concat self.use_rearrange_rope = use_rearrange_rope self.mask_generate = mask_generate self.fine_grain_interleave = fine_grain_interleave self.use_ring_attention = use_ring_attention self.post_self_attn_layernorm = post_self_attn_layernorm self.post_mlp_layernorm = post_mlp_layernorm