# Copyright 2024 Huawei Technologies Co., Ltd
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""ChatGLM4 Tokenizer."""
import base64
import os
from typing import List, Optional, Union, Dict
import tiktoken
import regex as re
from mindformers.mindformer_book import MindFormerBook
from mindformers.models.tokenization_utils import PreTrainedTokenizer, PaddingStrategy, EncodedInput, BatchEncoding
from mindformers.tools.register import MindFormerModuleType, MindFormerRegister
from mindformers.tools.utils import FILE_PERMISSION
__all__ = ['ChatGLM4Tokenizer']
[docs]@MindFormerRegister.register(MindFormerModuleType.TOKENIZER)
class ChatGLM4Tokenizer(PreTrainedTokenizer):
"""
Construct a ChatGLM4 tokenizer. Based on byte-level Byte-Pair-Encoding.
Args:
vocab_file (str): The vocabulary file path.
clean_up_tokenization_spaces (bool, optional): Whether to delete redundant spaces. Default: ``False``.
encode_special_tokens (bool, optional): Whether to encode the special tokens. Default: ``False``.
eos_token (Union[str, tokenizers.AddedToken], optional): The end of sequence token. Default: `"<|endoftext|>"` .
pad_token (Union[str, tokenizers.AddedToken], optional): A special token used to make arrays of tokens the same
size for batching purpose. Will then be ignored by attention mechanisms or loss computation.
Default: `"<|endoftext|>"` .
**kwargs: Other kwargs that will be passed into the base class of the `Tokenizer`.
Returns:
A ChatGLM4Tokenizer instance.
Examples:
>>> from mindformers import ChatGLM4Tokenizer
>>> tokenizer = ChatGLM4Tokenizer('tokenizer.model')
>>> prompts = ["晚上睡不着应该怎么办"]
>>> token_id = tokenizer(prompts)
>>> input_ids = token_id['input_ids']
>>> print(input_ids)
[[151331, 151333, 101160, 120410, 99379, 103298]]
>>> response = tokenizer.decode(input_ids)
>>> print(response)
['晚上睡不着应该怎么办']
"""
vocab_files_names = {"vocab_file": "tokenizer.model"}
model_input_names = ["input_ids", "attention_mask", "position_ids"]
_support_list = MindFormerBook.get_tokenizer_support_list()['glm4']
def __init__(
self,
vocab_file,
clean_up_tokenization_spaces=False,
encode_special_tokens=False,
eos_token='<|endoftext|>',
pad_token='<|endoftext|>',
**kwargs
):
self.name = "GLM4Tokenizer"
self.vocab_file = vocab_file
pat_str = ("(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+"
"[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+")
self.pat_str = re.compile(pat_str)
self.encode_special_tokens = encode_special_tokens
mergeable_ranks = {}
self.special_tokens = {"<|endoftext|>": 151329, "[MASK]": 151330, "[gMASK]": 151331, "[sMASK]": 151332,
"<sop>": 151333, "<eop>": 151334, "<|system|>": 151335, "<|user|>": 151336,
"<|assistant|>": 151337, "<|observation|>": 151338, "<|begin_of_image|>": 151339,
"<|end_of_image|>": 151340, "<|begin_of_video|>": 151341, "<|end_of_video|>": 151342}
self._eos_token = eos_token
self._pad_token = pad_token
with open(vocab_file) as f:
for line in f:
token, rank = line.strip().split()
rank = int(rank)
token = base64.b64decode(token)
mergeable_ranks[token] = rank
self.mergeable_ranks = mergeable_ranks
self.tokenizer = tiktoken.Encoding(
name="my_tokenizer",
pat_str=pat_str,
mergeable_ranks=mergeable_ranks,
special_tokens={}
)
self.decoder = {rank: token for token, rank in mergeable_ranks.items()}
self.n_words = len(self.decoder)
super().__init__(
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
eos_token=eos_token,
pad_token=pad_token,
**kwargs
)
for token in self.special_tokens:
self.add_tokens(token, special_tokens=True)
@property
def vocab_size(self):
return self.n_words
def get_vocab(self):
""" Returns vocab as a dict """
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def convert_tokens_to_string(self, tokens: List[Union[bytes, str, int]]) -> str:
"""
Converts a sequence of tokens in a single string.
"""
text = ""
temp = b""
for t in tokens:
if isinstance(t, int):
t = chr(t)
if isinstance(t, str):
if temp:
text += temp.decode("utf-8", errors="replace")
elif isinstance(t, bytes):
temp += t
else:
raise TypeError("token should only be of type int, bytes or str")
if temp != "":
text += temp.decode("utf-8", errors="replace")
return text
def _tokenize(self, text, **kwargs):
tokens = []
ids = self.tokenizer.encode(text)
for t in ids:
tokens.append(self.decoder[t])
return tokens
def _convert_token_to_id(self, token):
""" Converts a token (str) in an id using the vocab. """
return self.mergeable_ranks.get(token)
def convert_special_tokens_to_ids(self, token):
""" Converts special tokens to ids using the vocab. """
try:
return self.special_tokens.get(token)
except ValueError as e:
raise ValueError(f"{token} is not a special token for {self.name}") from e
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index, "")
def save_vocabulary(self, save_directory, filename_prefix=None):
"""
Save the vocabulary and special tokens file to a directory.
Args:
save_directory (`str`):
The directory in which to save the vocabulary.
filename_prefix (`str`, *optional*):
An optional prefix to add to the named of the saved files.
Returns:
`Tuple(str)`, Paths to the files saved.
"""
if os.path.isdir(save_directory):
vocab_file = os.path.join(save_directory, self.vocab_files_names.get("vocab_file"))
else:
vocab_file = save_directory
with open(self.vocab_file, 'rb') as fin:
proto_str = fin.read()
flags_ = os.O_WRONLY | os.O_CREAT | os.O_TRUNC
with os.fdopen(os.open(vocab_file, flags_, FILE_PERMISSION), 'wb') as writer:
writer.write(proto_str)
return (vocab_file,)
def get_prefix_tokens(self):
prefix_tokens = [self.convert_tokens_to_ids("[gMASK]"), self.convert_tokens_to_ids("<sop>")]
return prefix_tokens
def build_single_message(self, role, metadata, message, tokenize=True):
"""build single message with role."""
if role not in ["system", "user", "assistant", "observation"]:
raise ValueError(f'{role} not in ["system", "user", "assistant", "observation"]')
if tokenize:
role_tokens = [self.convert_tokens_to_ids(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n",
disallowed_special=())
message_tokens = self.tokenizer.encode(message, disallowed_special=())
tokens = role_tokens + message_tokens
return tokens
return str(f"<|{role}|>{metadata}\n{message}")
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`, list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
prefix_tokens = self.get_prefix_tokens()
token_ids_0 = prefix_tokens + token_ids_0
if token_ids_1 is not None:
token_ids_0 = token_ids_0 + token_ids_1 + [self.convert_tokens_to_ids("<eos>")]
return token_ids_0
def _pad(
self,
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
max_length: Optional[int] = None,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
) -> dict:
"""
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
Args:
encoded_inputs:
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
max_length: maximum length of the returned list and optionally padding length (see below).
Will truncate by taking into account the special tokens.
padding_strategy: PaddingStrategy to use for padding.
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
- PaddingStrategy.DO_NOT_PAD: Do not pad
The tokenizer padding sides are defined in self.padding_side:
- 'left': pads on the left of the sequences
- 'right': pads on the right of the sequences
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
`>= 7.5` (Volta).
return_attention_mask:
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
"""
# Load from model defaults
required_input = encoded_inputs[self.model_input_names[0]]
seq_length = len(required_input)
if padding_strategy == PaddingStrategy.LONGEST:
max_length = len(required_input)
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
# Initialize attention mask if not present.
if "attention_mask" not in encoded_inputs:
encoded_inputs["attention_mask"] = [1] * seq_length
if "position_ids" not in encoded_inputs:
encoded_inputs["position_ids"] = list(range(seq_length))
if needs_to_be_padded:
difference = max_length - len(required_input)
if "attention_mask" in encoded_inputs:
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
if "position_ids" in encoded_inputs:
encoded_inputs["position_ids"] = encoded_inputs["position_ids"] + [0] * difference
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
return encoded_inputs