mindformers.ModelRunner
- class mindformers.ModelRunner(model_path, npu_mem_size, cpu_mem_size, block_size, rank_id=0, world_size=1, npu_device_ids=None, plugin_params=None)[source]
ModelRunner API, supports MindFormers to be a backend of MindIEServer.
- Parameters
model_path (str) – The model config path contains model config file and tokenizer file.
npu_mem_size (int) – Npu memory size used for kv-cache.
cpu_mem_size (int) – Cpu memory size used for kv-cache.
block_size (int) – Block size used for kv-cache.
rank_id (int, optional) – Rank id used for infer. Default:
0
.world_size (int, optional) – Rank size used for infer. Default:
1
.npu_device_ids (list[int], optional) – Get npu_device_ids from MindIE config. Default:
None
.plugin_params (str, optional) – A JSON string that contains additional plugin parameters. Default:
None
.
- Returns
A MindIERunner object.
Examples
>>> from mindformers import ModelRunner >>> model_path = /path/to/model/ # contains model config file and tokenizer file. >>> npu_mem_size = 3 >>> cpu_mem_size = 1 >>> block_size = 128 >>> rank_id = 0 >>> world_size = 1 >>> npu_device_ids = [0] >>> model_runner = ModelRunner(model_path=model_path, npu_mem_size=npu_mem_size, cpu_mem_size=cpu_mem_size, >>> block_size=block_size, rank_id=rank_id, world_size=world_size, >>> npu_device_ids=npu_device_ids) >>> type(model_runner) <class 'mindformers.model_runner.MindIEModelRunner'>