Source code for mindformers.models.auto.tokenization_auto

# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
# Copyright 2024 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" Auto Tokenizer class."""

import importlib
import json
import os
import warnings
import shutil
from collections import OrderedDict
from typing import Dict, Optional, Union
from mindformers.tools.generic import experimental_mode_func_checker
from ..tokenization_utils import PreTrainedTokenizer
from ..tokenization_utils_base import TOKENIZER_CONFIG_FILE
from ...tools import (
    cached_file,
    extract_commit_hash,
)
from ...tools.hub import get_class_from_dynamic_module, resolve_trust_remote_code
from ...utils.import_utils import is_sentencepiece_available, is_tokenizers_available
from ...tools.logger import logger
from .configuration_auto import (
    CONFIG_MAPPING_NAMES,
    PretrainedConfig,
    AutoConfig,
    config_class_to_model_type
)
from .auto_factory import _LazyAutoMapping
from ...mindformer_book import MindFormerBook, print_dict

TOKENIZER_SUPPORT_LIST = MindFormerBook.get_tokenizer_support_list()

EXP_ERROR_MSG = "The input yaml_name_or_path should be a path to directory which has " \
                "yaml file, or a model name supported, e.g. llama2_7b."


def is_experimental_mode(path):
    """Check whether AutoTokenizer.from_pretrained() should go into original or experimental mode

    :param path: (str) path to AutoTokenizer.from_pretrained()
    :return: (bool) whether AutoTokenizer.from_pretrained() should go into original or experimental mode
    """
    experimental_mode = False

    is_exist = os.path.exists(path)
    is_dir = os.path.isdir(path)
    if is_dir:
        yaml_list = [file for file in os.listdir(path) if file.endswith(".yaml")]
        if not yaml_list:
            experimental_mode = True
    else:
        if (path.split("_")[0] not in TOKENIZER_SUPPORT_LIST and not path.startswith('mindspore')) or is_exist:
            experimental_mode = True

    return experimental_mode


# pylint: disable=C0103
if is_tokenizers_available():
    from ..tokenization_utils_fast import PreTrainedTokenizerFast
else:
    PreTrainedTokenizerFast = None

TOKENIZER_MAPPING_NAMES = OrderedDict(
    [
        ("bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
        ("bloom", ("BloomTokenizerFast", None if is_tokenizers_available() else None)),
        (
            "clip",
            (
                "CLIPTokenizer",
                None if is_tokenizers_available() else None,
            ),
        ),
        ("glm", ("ChatGLMTokenizer", None)),
        ("glm2", ("ChatGLM2Tokenizer", None)),
        ("glm3", ("ChatGLM3Tokenizer", None)),
        ("gpt2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
        (
            "llama",
            (
                "LlamaTokenizer" if is_sentencepiece_available() else None,
                "LlamaTokenizerFast" if is_tokenizers_available() else None,
            ),
        ),
        (
            "t5",
            (
                "T5Tokenizer" if is_sentencepiece_available() else None,
                "T5TokenizerFast" if is_tokenizers_available() else None,
            ),
        ),
        ("pangualpha", ("PanguAlphaTokenizer", None)),
    ]
)

TOKENIZER_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TOKENIZER_MAPPING_NAMES)

CONFIG_TO_TYPE = {v: k for k, v in CONFIG_MAPPING_NAMES.items()}


def tokenizer_class_from_name(class_name: str):
    """tokenizer_class_from_name"""
    if class_name == "PreTrainedTokenizerFast":
        return PreTrainedTokenizerFast

    for module_name, tokenizers in TOKENIZER_MAPPING_NAMES.items():
        if class_name in tokenizers:
            module = importlib.import_module(f".{module_name}", "mindformers.models")
            try:
                return getattr(module, class_name)
            except AttributeError:
                continue

    # pylint: disable=W0212
    for _, tokenizers in TOKENIZER_MAPPING._extra_content.items():
        for tokenizer in tokenizers:
            if getattr(tokenizer, "__name__", None) == class_name:
                return tokenizer

    # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
    # init, and we return the proper dummy to get an appropriate error message.
    main_module = importlib.import_module("mindformers")
    if hasattr(main_module, class_name):
        return getattr(main_module, class_name)

    return None


def get_tokenizer_config(
        pretrained_model_name_or_path: Union[str, os.PathLike],
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        force_download: bool = False,
        resume_download: bool = False,
        proxies: Optional[Dict[str, str]] = None,
        token: Optional[Union[bool, str]] = None,
        revision: Optional[str] = None,
        local_files_only: bool = False,
        subfolder: str = "",
        **kwargs,
):
    """Loads the tokenizer configuration from a pretrained model tokenizer configuration.

    Args:
        pretrained_model_name_or_path (`str` or `os.PathLike`):
            This can be either:

            - a string, the *model id* of a pretrained model configuration hosted inside a model repo on
              huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
              under a user or organization name, like `dbmdz/bert-base-german-cased`.
            - a path to a *directory* containing a configuration file saved using the
              [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.

        cache_dir (`str` or `os.PathLike`, *optional*):
            Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
            cache should not be used.
        force_download (`bool`, *optional*, defaults to `False`):
            Whether or not to force to (re-)download the configuration files and override the cached versions if they
            exist.
        resume_download (`bool`, *optional*, defaults to `False`):
            Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
        proxies (`Dict[str, str]`, *optional*):
            A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
            'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
        token (`str` or *bool*, *optional*):
            The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
            when running `huggingface-cli login` (stored in `~/.huggingface`).
        revision (`str`, *optional*, defaults to `"main"`):
            The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
            git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
            identifier allowed by git.
        local_files_only (`bool`, *optional*, defaults to `False`):
            If `True`, will only try to load the tokenizer configuration from local files.
        subfolder (`str`, *optional*, defaults to `""`):
            In case the tokenizer config is located inside a subfolder of the model repo on huggingface.co, you can
            specify the folder name here.

    <Tip>

    Passing `token=True` is required when you want to use a private model.

    </Tip>

    Returns:
        `Dict`: The configuration of the tokenizer.

    Examples:

    ```python
    # Download configuration from user-uploaded and cache.
    tokenizer_config = get_tokenizer_config("mindformersinfra/test_auto_tokenizer_gpt2_ms")
    # This model does not have a tokenizer config so the result will be an empty dict.
    tokenizer_config = get_tokenizer_config("xlm-roberta-base")

    # Save a pretrained tokenizer locally and you can reload its config
    from mindformers import AutoTokenizer

    tokenizer = AutoTokenizer.from_pretrained("gpt2")
    tokenizer.save_pretrained("tokenizer-test", save_json=True)
    tokenizer_config = get_tokenizer_config("tokenizer-test")
    ```
    """
    use_auth_token = kwargs.pop("use_auth_token", None)
    if use_auth_token is not None:
        warnings.warn(
            "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. "
            "Please use `token` instead.",
            FutureWarning,
        )
        if token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        token = use_auth_token

    commit_hash = kwargs.get("_commit_hash", None)
    resolved_config_file = cached_file(
        pretrained_model_name_or_path,
        TOKENIZER_CONFIG_FILE,
        cache_dir=cache_dir,
        force_download=force_download,
        resume_download=resume_download,
        proxies=proxies,
        token=token,
        revision=revision,
        local_files_only=local_files_only,
        subfolder=subfolder,
        _raise_exceptions_for_missing_entries=False,
        _raise_exceptions_for_connection_errors=False,
        _commit_hash=commit_hash,
    )
    if resolved_config_file is None:
        logger.info("Could not locate the tokenizer configuration file, will try to use the model config instead.")
        return {}
    commit_hash = extract_commit_hash(resolved_config_file, commit_hash)

    with open(resolved_config_file, encoding="utf-8") as reader:
        result = json.load(reader)
    result["_commit_hash"] = commit_hash
    return result


[docs]class AutoTokenizer: r""" This is a generic tokenizer class that will be instantiated as one of the tokenizer classes of the library when created with the from_pretrained class method. This class cannot be instantiated directly using `\_\_init\_\_()` (throws an error). Examples: >>> from mindformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("llama2_7b") """ _model_type = 0 _model_name = 1 def __init__(self): raise EnvironmentError( "AutoTokenizer is designed to be instantiated " "using the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod def invalid_yaml_name(cls, yaml_name_or_path): """Check whether it is a valid yaml name""" if yaml_name_or_path.startswith('mindspore'): # Adaptation the name of yaml at the beginning of mindspore, # the relevant file will be downloaded from the Xihe platform. # such as "mindspore/vit_base_p16" yaml_name_or_path = yaml_name_or_path.split('/')[cls._model_name] if not yaml_name_or_path.split('_')[cls._model_type] in TOKENIZER_SUPPORT_LIST.keys(): return True local_model_type = yaml_name_or_path.split('_')[cls._model_type] local_model_list = TOKENIZER_SUPPORT_LIST[local_model_type] if not isinstance(local_model_list, dict): if yaml_name_or_path in local_model_list: return False raise ValueError(f'\'{yaml_name_or_path}\' is not supported by \'{local_model_type}\', ' f'please select from {local_model_list}') local_model_names = local_model_list.keys() if len(yaml_name_or_path.split('_')) <= cls._model_name or \ yaml_name_or_path.split('_')[cls._model_name] not in local_model_names: raise ValueError(f'\'{yaml_name_or_path}\' is not supported by \'{local_model_type}\', ' f'please select from {local_model_list}') local_model_name = yaml_name_or_path.split('_')[cls._model_name] if yaml_name_or_path not in local_model_list[local_model_name]: raise ValueError(f'\'{yaml_name_or_path}\' is not supported by \'{local_model_type}_{local_model_name}\', ' f'please select from {local_model_list[local_model_name]}') return False @classmethod def _get_class_name_from_yaml(cls, yaml_name_or_path): """ Try to find the yaml from the given path Args: yaml_name_or_path (str): The directory of the config yaml Returns: The class name of the tokenizer in the config yaml. """ from ...tools import MindFormerConfig is_exist = os.path.exists(yaml_name_or_path) is_dir = os.path.isdir(yaml_name_or_path) is_file = os.path.isfile(yaml_name_or_path) if not is_file: if not is_exist: raise ValueError(f"{yaml_name_or_path} does not exist, Please pass a valid the directory.") if not is_dir: raise ValueError(f"{yaml_name_or_path} is not a directory. You should pass the directory.") # If passed a directory, load the file from the yaml files yaml_list = [file for file in os.listdir(yaml_name_or_path) if file.endswith(".yaml")] if not yaml_list: return None yaml_file = os.path.join(yaml_name_or_path, yaml_list[cls._model_type]) else: yaml_file = yaml_name_or_path logger.info("Config in the yaml file %s are used for tokenizer building.", yaml_file) config = MindFormerConfig(yaml_file) class_name = None if config and 'processor' in config and 'tokenizer' in config['processor'] \ and 'type' in config['processor']['tokenizer']: class_name = config['processor']['tokenizer'].pop('type', None) logger.info("Load the tokenizer name %s from the %s", class_name, yaml_name_or_path) return class_name
[docs] @classmethod def from_pretrained(cls, yaml_name_or_path, *args, **kwargs): r""" From pretrain method, which instantiates a tokenizer by a directory or model_id from modelers.cn. Warning: The API is experimental and may have some slight breaking changes in the next releases. Args: yaml_name_or_path (str): a folder containing YAML file, a folder containing JSON file, or a model_id from modelers.cn. The last two are experimental features. args (Any, optional): Will be passed along to the underlying tokenizer \_\_init\_\_() method. Only works in experimental mode. kwargs (Dict[str, Any], optional): The values in kwargs of any keys which are configuration attributes will be used to override the loaded values. Returns: A tokenizer. """ pretrained_model_name_or_path = kwargs.pop("pretrained_model_name_or_path", None) if pretrained_model_name_or_path is not None: yaml_name_or_path = pretrained_model_name_or_path if not is_experimental_mode(yaml_name_or_path): instanced_class = cls.get_class_from_origin_mode(yaml_name_or_path, **kwargs) else: instanced_class = cls.get_class_from_experimental_mode(yaml_name_or_path, *args, **kwargs) return instanced_class
@classmethod def get_class_from_origin_mode(cls, yaml_name_or_path, **kwargs): """original logic: from yaml.""" from ...tools import MindFormerRegister if not isinstance(yaml_name_or_path, str): raise TypeError(f"yaml_name_or_path should be a str," f" but got {type(yaml_name_or_path)}") # Try to load from the remote if not cls.invalid_yaml_name(yaml_name_or_path): # Should download the files from the remote storage yaml_name = yaml_name_or_path if yaml_name_or_path.startswith('mindspore'): # Adaptation the name of yaml at the beginning of mindspore, # the relevant file will be downloaded from the Xihe platform. # such as "mindspore/vit_base_p16" yaml_name = yaml_name_or_path.split('/')[cls._model_name] checkpoint_path = os.path.join(MindFormerBook.get_xihe_checkpoint_download_folder(), yaml_name.split('_')[cls._model_type]) else: # Default the name of yaml, # the relevant file will be downloaded from the Obs platform. # such as "vit_base_p16" checkpoint_path = os.path.join(MindFormerBook.get_default_checkpoint_download_folder(), yaml_name_or_path.split('_')[cls._model_type]) if not os.path.exists(checkpoint_path): os.makedirs(checkpoint_path, exist_ok=True) yaml_file = os.path.join(checkpoint_path, yaml_name + ".yaml") def get_default_yaml_file(model_name): default_yaml_file = "" for model_dict in MindFormerBook.get_trainer_support_task_list().values(): if model_name in model_dict: default_yaml_file = model_dict.get(model_name) break return default_yaml_file if not os.path.exists(yaml_file): default_yaml_file = get_default_yaml_file(yaml_name) if os.path.realpath(default_yaml_file) and os.path.exists(default_yaml_file): shutil.copy(default_yaml_file, yaml_file) logger.info("default yaml config in %s is used.", yaml_file) else: raise FileNotFoundError(f'default yaml file path must be correct, but get {default_yaml_file}') class_name = cls._get_class_name_from_yaml(yaml_file) elif os.path.isdir(yaml_name_or_path): class_name = cls._get_class_name_from_yaml(yaml_name_or_path) if not class_name: raise ValueError(f"The file `model_name.yaml` should exist in the path " f"{yaml_name_or_path}/model_name.yaml and should have `processor` configs like " f"configs/gpt2/run_gpt2.yaml, but not found.") else: raise FileNotFoundError(f"Tokenizer type `{yaml_name_or_path}` does not exist. " f"Use `{cls.__name__}.show_support_list()` to check the supported tokenizer. " f"Or make sure the `{yaml_name_or_path}` is a directory.") dynamic_class = MindFormerRegister.get_cls(module_type='tokenizer', class_name=class_name) instanced_class = dynamic_class.from_pretrained(yaml_name_or_path, **kwargs) logger.info("%s Tokenizer built successfully!", instanced_class.__class__.__name__) return instanced_class @classmethod @experimental_mode_func_checker(EXP_ERROR_MSG) def get_class_from_experimental_mode(cls, pretrained_model_name_or_path, *inputs, **kwargs): r""" Instantiate one of the tokenizer classes of the library from a pretrained model vocabulary. The tokenizer class to instantiate is selected based on the `model_type` property of the config object (either passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by falling back to using pattern matching on `pretrained_model_name_or_path`: List options Params: pretrained_model_name_or_path (`str` or `os.PathLike`): Can be either: - A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. - A path or url to a single saved vocabulary file if and only if the tokenizer only requires a single vocabulary file (like Bert or XLNet), e.g.: `./my_model_directory/vocab.txt`. (Not applicable to all derived classes) inputs (additional positional arguments, *optional*): Will be passed along to the Tokenizer `__init__()` method. config ([`PretrainedConfig`], *optional*) The configuration object used to determine the tokenizer class to instantiate. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download the model weights and configuration files and override the cached versions if they exist. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. subfolder (`str`, *optional*): In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for facebook/rag-token-base), specify it here. use_fast (`bool`, *optional*, defaults to `True`): Use a [fast Rust-based tokenizer](https://huggingface.co/docs/tokenizers/index) if it is supported for a given model. If a fast tokenizer is not available for a given model, a normal Python-based tokenizer is returned instead. tokenizer_type (`str`, *optional*): Tokenizer type to be loaded. trust_remote_code (`bool`, *optional*, defaults to `False`): Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to `True` for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. kwargs (additional keyword arguments, *optional*): Will be passed to the Tokenizer `__init__()` method. Can be used to set special tokens like `bos_token`, `eos_token`, `unk_token`, `sep_token`, `pad_token`, `cls_token`, `mask_token`, `additional_special_tokens`. See parameters in the `__init__()` for more details. Examples: >>> from mindformers import AutoTokenizer >>> # Download vocabulary from mindformers obs. >>> tokenizer = AutoTokenizer.from_pretrained("gpt2") >>> # Download vocabulary from user-uploaded and cache. >>> tokenizer = AutoTokenizer.from_pretrained("mindformersinfra/test_auto_tokenizer_gpt2_ms") >>> # If vocabulary files are in a directory >>> # (e.g. tokenizer was saved using *save_pretrained('./test/saved_model/')*) >>> # tokenizer = AutoTokenizer.from_pretrained("./test/bert_saved_model/") """ use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. " "Please use `token` instead.", FutureWarning, ) if kwargs.get("token", None) is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) kwargs["token"] = use_auth_token config = kwargs.pop("config", None) kwargs["_from_auto"] = True use_fast = kwargs.pop("use_fast", True) tokenizer_type = kwargs.pop("tokenizer_type", None) trust_remote_code = kwargs.pop("trust_remote_code", None) # First, let's see whether the tokenizer_type is passed so that we can leverage it if tokenizer_type is not None: tokenizer_class = None tokenizer_class_tuple = TOKENIZER_MAPPING_NAMES.get(tokenizer_type, None) if tokenizer_class_tuple is None: raise ValueError( f"Passed `tokenizer_type` {tokenizer_type} does not exist. `tokenizer_type` should be one of " f"{', '.join(c for c in TOKENIZER_MAPPING_NAMES.keys())}." ) tokenizer_class_name, tokenizer_fast_class_name = tokenizer_class_tuple if use_fast: if tokenizer_fast_class_name is not None: tokenizer_class = tokenizer_class_from_name(tokenizer_fast_class_name) else: logger.warning( "`use_fast` is set to `True` but the tokenizer class does not have a fast version. " " Falling back to the slow version." ) if tokenizer_class is None: tokenizer_class = tokenizer_class_from_name(tokenizer_class_name) if tokenizer_class is None: raise ValueError(f"Tokenizer class {tokenizer_class_name} is not currently imported.") return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) # Next, let's try to use the tokenizer_config file to get the tokenizer class. tokenizer_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs) if "_commit_hash" in tokenizer_config: kwargs["_commit_hash"] = tokenizer_config["_commit_hash"] config_tokenizer_class = tokenizer_config.get("tokenizer_class") tokenizer_auto_map = None if "auto_map" in tokenizer_config: if isinstance(tokenizer_config["auto_map"], (tuple, list)): # Legacy format for dynamic tokenizers tokenizer_auto_map = tokenizer_config["auto_map"] else: tokenizer_auto_map = tokenizer_config["auto_map"].get("AutoTokenizer", None) # If that did not work, let's try to use the config. if config_tokenizer_class is None: if not isinstance(config, PretrainedConfig): config = AutoConfig.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs ) config_tokenizer_class = config.tokenizer_class if hasattr(config, "auto_map") and config.auto_map is not None and "AutoTokenizer" in config.auto_map: tokenizer_auto_map = config.auto_map["AutoTokenizer"] has_remote_code = tokenizer_auto_map is not None # pylint: disable=C0123 has_local_code = config_tokenizer_class is not None or type(config) in TOKENIZER_MAPPING trust_remote_code = resolve_trust_remote_code( trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code ) if has_remote_code and trust_remote_code: if use_fast and tokenizer_auto_map[1] is not None: class_ref = tokenizer_auto_map[1] else: class_ref = tokenizer_auto_map[0] tokenizer_class = get_class_from_dynamic_module(class_ref, pretrained_model_name_or_path, **kwargs) _ = kwargs.pop("code_revision", None) if os.path.isdir(pretrained_model_name_or_path): tokenizer_class.register_for_auto_class() return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) if config_tokenizer_class is not None: tokenizer_class = None if use_fast and not config_tokenizer_class.endswith("Fast"): tokenizer_class_candidate = f"{config_tokenizer_class}Fast" tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate) if tokenizer_class is None: tokenizer_class_candidate = config_tokenizer_class tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate) if tokenizer_class is None: raise ValueError( f"Tokenizer class {tokenizer_class_candidate} does not exist or is not currently imported." ) return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) model_type = config_class_to_model_type(type(config).__name__) if model_type is not None: tokenizer_class_py, tokenizer_class_fast = TOKENIZER_MAPPING[type(config)] if tokenizer_class_fast and (use_fast or tokenizer_class_py is None): return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) if tokenizer_class_py is not None: return tokenizer_class_py.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) raise ValueError( "This tokenizer cannot be instantiated. Please make sure you have `sentencepiece` installed " "in order to use this tokenizer." ) raise ValueError( f"Unrecognized configuration class {config.__class__} to build an AutoTokenizer.\n" f"Model type should be one of {', '.join(c.__name__ for c in TOKENIZER_MAPPING.keys())}." )
[docs] @staticmethod def register(config_class, slow_tokenizer_class=None, fast_tokenizer_class=None, exist_ok=False): r""" Register new tokenizers for this class. Warning: The API is experimental and may have some slight breaking changes in the next releases. Args: config_class (PretrainedConfig): The model config class. slow_tokenizer_class (PreTrainedTokenizer, optional): The slow_tokenizer class. Default: ``None``. fast_tokenizer_class (PreTrainedTokenizerFast, optional): The fast_tokenizer class. Default: ``None``. exist_ok (bool, optional): If set to True, no error will be raised even if config_class already exists. Default: ``False``. """ if slow_tokenizer_class is None and fast_tokenizer_class is None: raise ValueError("You need to pass either a `slow_tokenizer_class` or a `fast_tokenizer_class") if slow_tokenizer_class is not None and issubclass(slow_tokenizer_class, PreTrainedTokenizerFast): raise ValueError("You passed a fast tokenizer in the `slow_tokenizer_class`.") if fast_tokenizer_class is not None and issubclass(fast_tokenizer_class, PreTrainedTokenizer): raise ValueError("You passed a slow tokenizer in the `fast_tokenizer_class`.") if ( slow_tokenizer_class is not None and fast_tokenizer_class is not None and issubclass(fast_tokenizer_class, PreTrainedTokenizerFast) and fast_tokenizer_class.slow_tokenizer_class != slow_tokenizer_class ): raise ValueError( "The fast tokenizer class you are passing has a `slow_tokenizer_class` attribute that is not " "consistent with the slow tokenizer class you passed (fast tokenizer has " f"{fast_tokenizer_class.slow_tokenizer_class} and you passed {slow_tokenizer_class}. Fix one of those " "so they match!" ) # Avoid resetting a set slow/fast tokenizer if we are passing just the other ones. # pylint: disable=W0212 if config_class in TOKENIZER_MAPPING._extra_content: existing_slow, existing_fast = TOKENIZER_MAPPING[config_class] if slow_tokenizer_class is None: slow_tokenizer_class = existing_slow if fast_tokenizer_class is None: fast_tokenizer_class = existing_fast TOKENIZER_MAPPING.register(config_class, (slow_tokenizer_class, fast_tokenizer_class), exist_ok=exist_ok)
@classmethod def show_support_list(cls): """show support list method""" logger.info("support list of %s is:", cls.__name__) print_dict(TOKENIZER_SUPPORT_LIST) @classmethod @staticmethod def get_support_list(cls): """get support list method""" return TOKENIZER_SUPPORT_LIST