{ "cells": [ { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "# 基于FNO求解一维Burgers\n", "\n", "[![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.0.0-alpha/resource/_static/logo_notebook.png)](https://obs.dualstack.cn-north-4.myhuaweicloud.com/mindspore-website/notebook/r2.0.0-alpha/mindflow/zh_cn/data_driven/mindspore_FNO1D.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.0.0-alpha/resource/_static/logo_download_code.png)](https://obs.dualstack.cn-north-4.myhuaweicloud.com/mindspore-website/notebook/r2.0.0-alpha/mindflow/zh_cn/data_driven/mindspore_FNO1D.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.0.0-alpha/resource/_static/logo_source.png)](https://gitee.com/mindspore/docs/blob/r2.0.0-alpha/docs/mindflow/docs/source_zh_cn/data_driven/FNO1D.ipynb)" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "## 概述\n", "\n", "计算流体力学是21世纪流体力学领域的重要技术之一,其通过使用数值方法在计算机中对流体力学的控制方程进行求解,从而实现流动的分析、预测和控制。传统的有限元法(finite element method,FEM)和有限差分法(finite difference method,FDM)常用于复杂的仿真流程(物理建模、网格划分、数值离散、迭代求解等)和较高的计算成本,往往效率低下。因此,借助AI提升流体仿真效率是十分必要的。\n", "\n", "近年来,随着神经网络的迅猛发展,为科学计算提供了新的范式。经典的神经网络是在有限维度的空间进行映射,只能学习与特定离散化相关的解。与经典神经网络不同,傅里叶神经算子(Fourier Neural Operator,FNO)是一种能够学习无限维函数空间映射的新型深度学习架构。该架构可直接学习从任意函数参数到解的映射,用于解决一类偏微分方程的求解问题,具有更强的泛化能力。更多信息可参考[Fourier Neural Operator for Parametric Partial Differential Equations](https://arxiv.org/abs/2010.08895)。\n", "\n", "本案例教程介绍利用傅里叶神经算子的1-d Burgers方程求解方法。" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "## 伯格斯方程(Burgers' equation)\n", "\n", "一维伯格斯方程(1-d Burgers' equation)是一个非线性偏微分方程,具有广泛应用,包括一维粘性流体流动建模。它的形式如下:\n", "\n", "$$\n", "\\partial_t u(x, t)+\\partial_x (u^2(x, t)/2)=\\nu \\partial_{xx} u(x, t), \\quad x \\in(0,1), t \\in(0, 1]\n", "$$\n", "\n", "$$\n", "u(x, 0)=u_0(x), \\quad x \\in(0,1)\n", "$$\n", "\n", "其中$u$表示速度场,$u_0$表示初始条件,$\\nu$表示粘度系数。\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 问题描述\n", "\n", "本案例利用Fourier Neural Operator学习初始状态到下一时刻状态的映射,实现一维Burgers'方程的求解:\n", "\n", "$$\n", "u_0 \\mapsto u(\\cdot, 1)\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 技术路径\n", "\n", "MindFlow求解该问题的具体流程如下:\n", "\n", "1. 创建数据集。\n", "2. 构建模型。\n", "3. 优化器与损失函数。\n", "4. 定义求解器。\n", "5. 定义回调函数。\n", "6. 模型训练。" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Fourier Neural Operator\n", "\n", "Fourier Neural Operator模型构架如下图所示。图中$w_0(x)$表示初始涡度,通过Lifting Layer实现输入向量的高维映射,然后将映射结果作为Fourier Layer的输入,进行频域信息的非线性变换,最后由Decoding Layer将变换结果映射至最终的预测结果$w_1(x)$。\n", "\n", "Lifting Layer、Fourier Layer以及Decoding Layer共同组成了Fourier Neural Operator。\n", "\n", "![Fourier Neural Operator模型构架](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.0.0-alpha/docs/mindflow/docs/source_zh_cn/data_driven/images/FNO.png)\n", "\n", "Fourier Layer网络结构如下图所示。图中V表示输入向量,上框表示向量经过傅里叶变换后,经过线性变换R,过滤高频信息,然后进行傅里叶逆变换;另一分支经过线性变换W,最后通过激活函数,得到Fourier Layer输出向量。\n", "\n", "![Fourier Layer网络结构](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.0.0-alpha/docs/mindflow/docs/source_zh_cn/data_driven/images/FNO-2.png)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "import os\n", "\n", "import numpy as np\n", "\n", "from mindspore import context, nn, Tensor, set_seed\n", "from mindspore import DynamicLossScaleManager, LossMonitor, TimeMonitor\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "下述`src`包可以在[applications/data_driven/burgers/src](https://gitee.com/mindspore/mindscience/tree/r0.2.0-alpha/MindFlow/applications/data_driven/burgers/src)下载。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "from mindflow import FNO1D, RelativeRMSELoss, Solver, load_yaml_config, get_warmup_cosine_annealing_lr\n", "\n", "from src import PredictCallback, create_training_dataset\n", "\n", "\n", "set_seed(0)\n", "np.random.seed(0)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "context.set_context(mode=context.GRAPH_MODE, device_target='GPU', device_id=4)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "config = load_yaml_config(\"burgers1d.yaml\")\n", "data_params = config[\"data\"]\n", "model_params = config[\"model\"]\n", "optimizer_params = config[\"optimizer\"]\n", "callback_params = config[\"callback\"]" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "## 创建数据集\n", "\n", "下载训练与测试数据集: [data_driven/burgers/dataset](https://download.mindspore.cn/mindscience/mindflow/dataset/applications/data_driven/burgers/dataset/)。\n", "\n", "本案例根据Zongyi Li在 [Fourier Neural Operator for Parametric Partial Differential Equations](https://arxiv.org/pdf/2010.08895.pdf) 一文中对数据集的设置生成训练数据集与测试数据集。具体设置如下:\n", "基于周期性边界,生成满足如下分布的初始条件$u_0(x)$:\n", "\n", "$$\n", "u_0 \\sim \\mu, \\mu=\\mathcal{N}\\left(0,625(-\\Delta+25 I)^{-2}\\right)\n", "$$\n", "\n", "本案例选取粘度系数$\\nu=0.1$,并使用分步法求解方程,其中热方程部分在傅里叶空间中精确求解,然后使用前向欧拉方法求解非线性部分。训练集样本量为1000个,测试集样本量为200个。" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Data preparation finished\n", "input_path: (1000, 1024, 1)\n", "label_path: (1000, 1024)\n" ] } ], "source": [ "# create training dataset\n", "train_dataset = create_training_dataset(data_params, shuffle=True)\n", "\n", "# create test dataset\n", "test_input, test_label = np.load(os.path.join(data_params[\"path\"], \"test/inputs.npy\")), \\\n", " np.load(os.path.join(data_params[\"path\"], \"test/label.npy\"))\n" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "## 构建模型\n", "\n", "网络由1层Lifting layer、1层Decoding layer以及多层Fourier Layer叠加组成:\n", "\n", "- Lifting layer对应样例代码中`FNO1D.fc0`,将输出数据$x$映射至高维;\n", "\n", "- 多层Fourier Layer的叠加对应样例代码中`FNO1D.fno_seq`,本案例采用离散傅里叶变换实现时域与频域的转换;\n", "\n", "- Decoding layer对应代码中`FNO1D.fc1`与`FNO1D.fc2`,获得最终的预测值。\n", "\n", "基于上述网络结构,进行模型初始化,其中模型参数可在[配置文件](https://gitee.com/mindspore/mindscience/blob/r0.2.0-alpha/MindFlow/applications/data_driven/burgers/burgers1d.yaml)中修改。" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "model = FNO1D(in_channels=model_params[\"in_channels\"],\n", " out_channels=model_params[\"out_channels\"],\n", " resolution=model_params[\"resolution\"],\n", " modes=model_params[\"modes\"],\n", " channels=model_params[\"width\"],\n", " depth=model_params[\"depth\"])" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "## 优化器与损失函数\n", "\n", "使用相对均方根误差作为网络训练损失函数:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "steps_per_epoch = train_dataset.get_dataset_size()\n", "lr = get_warmup_cosine_annealing_lr(lr_init=optimizer_params[\"initial_lr\"],\n", " last_epoch=optimizer_params[\"train_epochs\"],\n", " steps_per_epoch=steps_per_epoch,\n", " warmup_epochs=1)\n", "optimizer = nn.Adam(model.trainable_params(), learning_rate=Tensor(lr))\n", "loss_scale = DynamicLossScaleManager()\n", "\n", "loss_fn = RelativeRMSELoss()" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "## 定义求解器\n", "\n", "Solver类是模型训练和推理的接口。输入优化器、网络模型、损失函数、损失缩放策略等,即可定义求解器对象solver。代码中optimizer_params、model_params对应各项参数均在[配置文件](https://gitee.com/mindspore/mindscience/blob/r0.2.0-alpha/MindFlow/applications/data_driven/burgers/burgers1d.yaml)中修改。" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "solver = Solver(model,\n", " optimizer=optimizer,\n", " loss_scale_manager=loss_scale,\n", " loss_fn=loss_fn,\n", " )" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "## 定义回调函数" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "./FNO1D\n", "check test dataset shape: (200, 1024, 1), (200, 1024)\n" ] } ], "source": [ "summary_dir = os.path.join(callback_params[\"summary_dir\"], \"FNO1D\")\n", "print(summary_dir)\n", "pred_cb = PredictCallback(model=model,\n", " inputs=test_input,\n", " label=test_label,\n", " config=config,\n", " summary_dir=summary_dir)" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "## 模型训练\n", "\n", "调用求解器接口进行模型训练,调用回调接口进行评估。" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "epoch: 1 step: 125, loss is 2.377823\n", "Train epoch time: 5782.938 ms, per step time: 46.264 ms\n", "epoch: 2 step: 125, loss is 0.88470775\n", "Train epoch time: 1150.446 ms, per step time: 9.204 ms\n", "epoch: 3 step: 125, loss is 0.98071647\n", "Train epoch time: 1135.464 ms, per step time: 9.084 ms\n", "epoch: 4 step: 125, loss is 0.5404751\n", "Train epoch time: 1114.245 ms, per step time: 8.914 ms\n", "epoch: 5 step: 125, loss is 0.39976493\n", "Train epoch time: 1125.107 ms, per step time: 9.001 ms\n", "epoch: 6 step: 125, loss is 0.508416\n", "Train epoch time: 1127.477 ms, per step time: 9.020 ms\n", "epoch: 7 step: 125, loss is 0.42839915\n", "Train epoch time: 1125.775 ms, per step time: 9.006 ms\n", "epoch: 8 step: 125, loss is 0.28270185\n", "Train epoch time: 1118.428 ms, per step time: 8.947 ms\n", "epoch: 9 step: 125, loss is 0.24137405\n", "Train epoch time: 1121.705 ms, per step time: 8.974 ms\n", "epoch: 10 step: 125, loss is 0.22623646\n", "Train epoch time: 1118.699 ms, per step time: 8.950 ms\n", "================================Start Evaluation================================\n", "mean rms_error: 0.03270653011277318\n", "=================================End Evaluation=================================\n", "...\n", "predict total time: 0.5012176036834717 s\n", "epoch: 91 step: 125, loss is 0.026378194\n", "Train epoch time: 1119.095 ms, per step time: 8.953 ms\n", "epoch: 92 step: 125, loss is 0.057838168\n", "Train epoch time: 1116.712 ms, per step time: 8.934 ms\n", "epoch: 93 step: 125, loss is 0.034773324\n", "Train epoch time: 1107.931 ms, per step time: 8.863 ms\n", "epoch: 94 step: 125, loss is 0.029720988\n", "Train epoch time: 1109.336 ms, per step time: 8.875 ms\n", "epoch: 95 step: 125, loss is 0.02933883\n", "Train epoch time: 1111.804 ms, per step time: 8.894 ms\n", "epoch: 96 step: 125, loss is 0.03140598\n", "Train epoch time: 1116.788 ms, per step time: 8.934 ms\n", "epoch: 97 step: 125, loss is 0.03695058\n", "Train epoch time: 1115.020 ms, per step time: 8.920 ms\n", "epoch: 98 step: 125, loss is 0.039841708\n", "Train epoch time: 1120.316 ms, per step time: 8.963 ms\n", "epoch: 99 step: 125, loss is 0.039001673\n", "Train epoch time: 1134.618 ms, per step time: 9.077 ms\n", "epoch: 100 step: 125, loss is 0.038434036\n", "Train epoch time: 1116.549 ms, per step time: 8.932 ms\n", "================================Start Evaluation================================\n", "mean rms_error: 0.005707952339434996\n", "=================================End Evaluation=================================\n", "predict total time: 0.5055065155029297 s\n" ] } ], "source": [ "solver.train(epoch=optimizer_params[\"train_epochs\"],\n", " train_dataset=train_dataset,\n", " callbacks=[LossMonitor(), TimeMonitor(), pred_cb],\n", " dataset_sink_mode=True)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3.8.0 64-bit", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.0" }, "vscode": { "interpreter": { "hash": "df0893f56f349688326838aaeea0de204df53a132722cbd565e54b24a8fec5f6" } } }, "nbformat": 4, "nbformat_minor": 1 }