mindelec.architecture.mtl_weighted_loss 源代码

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""mtl_weighted_loss"""
from __future__ import absolute_import

import numpy as np

import mindspore.ops as ops
import mindspore.nn as nn
import mindspore.common.dtype as mstype
from mindspore.common.tensor import Tensor
from mindspore import Parameter
from .util import check_mode, check_type

__all__ = ['MTLWeightedLossCell']


[文档]class MTLWeightedLossCell(nn.Cell): r""" The MTL strategy weighted multi-task losses automatically. For more information, please refer to `MTL weighted losses <https://arxiv.org/pdf/1805.06334.pdf>`_ . Args: num_losses (int): The number of multi-task losses, should be positive integer. Inputs: - **input** - tuple of Tensors. Outputs: Scalar. Supported Platforms: ``Ascend`` Examples: >>> import numpy as np >>> from mindelec.architecture import MTLWeightedLossCell >>> import mindspore >>> from mindspore import Tensor >>> net = MTLWeightedLossCell(num_losses=2) >>> input1 = Tensor(1.0, mindspore.float32) >>> input2 = Tensor(0.8, mindspore.float32) >>> output = net((input1, input2)) >>> print(output) 2.2862945 """ def __init__(self, num_losses): super(MTLWeightedLossCell, self).__init__(auto_prefix=False) check_mode("MTLWeightedLossCell") check_type(num_losses, "num_losses", int, exclude=bool) if num_losses <= 0: raise ValueError("the value of num_losses should be positive, but got {}".format(num_losses)) self.num_losses = num_losses self.params = Parameter(Tensor(np.ones(num_losses), mstype.float32), requires_grad=True) self.concat = ops.Concat(axis=0) self.pow = ops.Pow() self.log = ops.Log() self.div = ops.RealDiv() def construct(self, losses): loss_sum = 0 params = self.pow(self.params, 2) for i in range(self.num_losses): weighted_loss = 0.5 * self.div(losses[i], params[i]) + self.log(params[i] + 1.0) loss_sum = loss_sum + weighted_loss return loss_sum