mindelec.data.ExistedDataset
- class mindelec.data.ExistedDataset(name=None, data_dir=None, columns_list=None, data_format='npy', constraint_type='Label', random_merge=True, data_config=None)[source]
Creates a dataset with given data path.
Note
The npy data format is supported now.
- Parameters
name (str, optional) – specifies the name of dataset. Default:
None
. If data_config isNone
, the name should not beNone
.data_dir (Union[str, list, tuple], optional) – the path of existed data files. Default:
None
. If data_config isNone
, the data_dir should not beNone
.columns_list (Union[str, list, tuple], optional) – list of column names of the dataset. Default:
None
. If data_config isNone
, the columns_list should not beNone
.data_format (str, optional) – the format of existed data files. Default:
'npy'
.constraint_type (str, optional) – specifies the constraint type of the created dataset. Default:
"Label"
.random_merge (bool, optional) – specifies whether randomly merge the given datasets. Default:
True
.data_config (ExistedDataConfig, optional) – Instance of ExistedDataConfig which collect the info described above. Default:
None
. If it's notNone
, the dataset class will be create by using it for simplifying. If it'sNone
, the info of (name, data_dir, columns_list, data_format, constraint_type, random_merge) will be used for replacement.
- Raises
ValueError – If name / data_dir / columns_list is
None
when data_config isNone
.TypeError – If data_config is not a instance of ExistedDataConfig.
ValueError – If data_format is not
'npy'
.
- Supported Platforms:
Ascend
Examples
>>> from mindelec.data import ExistedDataConfig, ExistedDataset >>> data_config = ExistedDataConfig(name='exist', ... data_dir=['./data.npy'], ... columns_list=['input_data'], data_format="npy", constraint_type="Equation") >>> dataset = ExistedDataset(data_config=data_config)