mindchemistry.e3.o3.wigner_D
- mindchemistry.e3.o3.wigner_D(l, alpha, beta, gamma)[source]
- Wigner D matrix representation of SO(3). - It satisfies the following properties: * \(D(\text{identity rotation}) = \text{identity matrix}\) * \(D(R_1 \circ R_2) = D(R_1) \circ D(R_2)\) * \(D(R^{-1}) = D(R)^{-1} = D(R)^T\) - Parameters
- l (int) – degree of representation. 
- alpha (Union[Tensor[float32], List[float], Tuple[float], ndarray[np.float32], float]) – rotation \(\alpha\) around Y axis, applied third. 
- beta (Union[Tensor[float32], List[float], Tuple[float], ndarray[np.float32], float]) – rotation \(\beta\) around X axis, applied second. 
- gamma (Union[Tensor[float32], List[float], Tuple[float], ndarray[np.float32], float]) – rotation \(\gamma\) around Y axis, applied first. 
 
- Returns
- Tensor, Wigner D matrix \(D^l(\alpha, \beta, \gamma)\). The shape of Tensor is \((2l+1, 2l+1)\). 
 - Supported Platforms:
- Ascend
 - Examples - >>> from mindchemistry.e3.o3 import wigner_D >>> m = wigner_D(1,1,1,1) >>> print(m) [[-0.09064701 0.7080733 0.70029646] [ 0.7080733 0.54030234 -0.45464867] [-0.7002964 0.45464864 -0.5503447 ]]