mindchemistry.e3.nn.FullyConnectedNet
- class mindchemistry.e3.nn.FullyConnectedNet(h_list, act=None, out_act=False, init_method='normal', dtype=float32)[source]
Fully-connected Neural Network with normalized activation on scalars.
- Parameters
h_list (List[int]) – a list of input, internal and output dimensions for dense layers.
act (Func) – activation function which will be automatically normalized. Default:
None
.out_act (bool) – whether apply the activation function on the output. Default:
False
.init_method (Union[str, mindspore.common.initializer]) – initialize parameters. Default:
'normal'
.dtype (mindspore.dtype) – The type of input tensor. Default:
mindspore.float32
.
- Inputs:
input (Tensor) - The shape of Tensor is \((h\_list[0])\).
- Outputs:
output (Tensor) - The shape of Tensor is \((h\_list[-1])\).
- Raises
TypeError – If the elements h_list are not int.
- Supported Platforms:
Ascend
Examples
>>> import mindspore as ms >>> from mindchemistry.e3.nn import FullyConnectedNet >>> fc = FullyConnectedNet([4,10,20,12,6], ops.tanh) FullyConnectedNet [4, 10, 20, 12, 6] >>> v = ms.Tensor([.1,.2,.3,.4]) >>> grad = ops.grad(fc, weights=fc.trainable_params()) >>> fc(v).shape (6,) >>> [x.shape for x in grad(v)[1]] [(4, 10), (10, 20), (20, 12), (12, 6)]