# Model Encryption Protection `Linux` `Ascend` `GPU` `CPU` `Model Protection` `Enterprise` `Expert` [![View Source On Gitee](https://gitee.com/mindspore/docs/raw/r1.3/resource/_static/logo_source.png)](https://gitee.com/mindspore/docs/blob/r1.3/docs/mindarmour/docs/source_en/model_encrypt_protection.md)   ## Overview The MindSpore framework provides the symmetric encryption algorithm to encrypt the parameter files or inference models to protect the model files. When the symmetric encryption algorithm is used, the ciphertext model is directly loaded to complete inference or incremental training. Currently, the encryption solution protects checkpoint and MindIR model files on the Linux platform. The following uses an example to describe how to encrypt, export, decrypt, and load data. > Download address of the complete sample code: ## Safely Exporting a Checkpoint File Currently, MindSpore supports the use of the callback mechanism to save model parameters during training. You can configure the encryption key and encryption mode in the `CheckpointConfig` object and transfer them to the `ModelCheckpoint` to enable encryption protection for the parameter file. The configuration procedure is as follows: ```python from mindspore.train.callback import CheckpointConfig, ModelCheckpoint config_ck = CheckpointConfig(save_checkpoint_steps=1875, keep_checkpoint_max=10, enc_key=b'0123456789ABCDEF', enc_mode='AES-GCM') ckpoint_cb = ModelCheckpoint(prefix='lenet_enc', directory=None, config=config_ck) model.train(10, dataset, callbacks=ckpoint_cb) ``` In the preceding code, the encryption key and encryption mode are initialized in `CheckpointConfig` to enable model encryption. - `enc_key` indicates the key used for symmetric encryption. - `enc_mode` indicates the encryption mode. In addition to the preceding method for saving model parameters, you can also call the `save_checkpoint` API to save model parameters. The method is as follows: ```python from mindspore import save_checkpoint save_checkpoint(network, 'lenet_enc.ckpt', enc_key=b'0123456789ABCDEF', enc_mode='AES-GCM') ``` The definitions of `enc_key` and `enc_mode` are the same as those described above. ## Loading the Ciphertext Checkpoint File MindSpore provides `load_checkpoint` and `load_distributed_checkpoint` for loading checkpoint parameter files in single-file and distributed scenarios, respectively. For example, in the single-file scenario, you can use the following method to load the ciphertext checkpoint file: ```python from mindspore import load_checkpoint param_dict = load_checkpoint('lenet_enc.ckpt', dec_key=b'0123456789ABCDEF', dec_mode='AES-GCM') ``` In the preceding code, `dec_key` and `dec_mode` are specified to enable the function of reading the ciphertext file. - `dec_key` indicates the key used for symmetric decryption. - `dec_mode` indicates the decryption mode. The methods in distributed scenarios are similar. You only need to specify `dec_key` and `dec_mode` when calling `load_distributed_checkpoint`. ## Safely Exporting a MindIR File The `export` API provided by MindSpore can be used to export models in MindIR, AIR, or ONNX format. When exporting a MindIR model, you can use the following method to enable encryption protection: ```python from mindspore import export input_arr = Tensor(np.zeros([32, 3, 32, 32], np.float32)) export(network, input_arr, file_name='lenet_enc', file_format='MINDIR', enc_key=b'0123456789ABCDEF', enc_mode='AES-GCM') ``` > Currently, the AIR and ONNX formats do not support encryption protection. ## Loading the Ciphertext MindIR File If you write scripts using Python on the cloud, you can use the `load` API to load the MindIR model. When loading the ciphertext MindIR, you can specify `dec_key` and `dec_mode` to decrypt the model. ```python from mindspore import load graph = load('lenet_enc.mindir', dec_key=b'0123456789ABCDEF', dec_mode='AES-GCM') ``` For C++ scripts, MindSpore also provides the `Load` API to load MindIR models. For details about the API definition, see [MindSpore API](https://www.mindspore.cn/lite/api/en/r1.3/api_cpp/mindspore.html?highlight=load). When loading a ciphertext model, you can specify `dec_key` and `dec_mode` to decrypt the model. ```C++ #include "include/api/serialization.h" namespace mindspore{ Graph graph; const unsigned char[] key = "0123456789ABCDEF"; const size_t key_len = 16; Key dec_key(key, key_len); Serialization::Load("./lenet_enc.mindir", ModelType::kMindIR, &graph, dec_key, "AES-GCM"); } // namespace mindspore ``` ## On-Device Model Protection ### Model Converter The model converter provided by MindSpore Lite can convert a ciphertext MindIR model into a plaintext MS model. You only need to specify the key and decryption mode when calling this tool. Note that the key is a hexadecimal character string, for example, the hexadecimal string corresponding to `b'0123456789ABCDEF` is `30313233343536373839414243444546`. On the Linux platform, you can use the `xxd` tool to convert the key represented by bytes to a hexadecimal string. The call method is as follows: ```shell ./converter_tools --fmk=MINDIR --modelFile=./lenet_enc.mindir --outputFile=lenet --decryptKey=30313233343536373839414243444546 --decryptMode=AES-GCM ```