Class DistributedSampler
- Defined in File samplers.h 
Inheritance Relationships
Base Type
- public mindspore::dataset::Sampler(Class Sampler)
Class Documentation
- 
class DistributedSampler : public mindspore::dataset::Sampler
- A class to represent a Distributed Sampler in the data pipeline. - 说明 - A Sampler that accesses a shard of the dataset. - Public Functions - 
DistributedSampler(int64_t num_shards, int64_t shard_id, dataset::ShuffleMode shuffle_mode = dataset::ShuffleMode::kGlobal, int64_t num_samples = 0, uint32_t seed = 1, int64_t offset = -1, bool even_dist = true)
- Constructor. - 参数
- num_shards – [in] Number of shards to divide the dataset into. 
- shard_id – [in] Shard ID of the current shard within num_shards. 
- shuffle_mode – [in] If not kFalse, the indices are shuffled (default=kGlobal). 
- num_samples – [in] The number of samples to draw (default=0, return all samples). 
- seed – [in] The seed in use when shuffle_mode is not kFalse (default=1). 
- offset – [in] The starting position where access to elements in the dataset begins (default=-1). 
- even_dist – [in] If true, each shard would return the same number of rows (default=true). If false the total rows returned by all the shards would not have overlap. 
 样例
- /* creates a distributed sampler with 2 shards in total. This shard is shard 0 */ std::string file_path = "/path/to/test.mindrecord"; std::shared_ptr<Dataset> ds = MindData(file_path, {}, std::make_shared<DistributedSampler>(2, 0, false)); 
 
 - 
~DistributedSampler() override = default
- Destructor. 
 
- 
DistributedSampler(int64_t num_shards, int64_t shard_id, dataset::ShuffleMode shuffle_mode = dataset::ShuffleMode::kGlobal, int64_t num_samples = 0, uint32_t seed = 1, int64_t offset = -1, bool even_dist = true)