# 比较与torch.distributed.scatter的差异 [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.4.10/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/r2.4.10/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/distributed.scatter.md) ## torch.distributed.scatter ```python torch.distributed.scatter( tensor, scatter_list=None, src=0, group=None, async_op=False ) ``` 更多内容详见[torch.distributed.scatter](https://pytorch.org/docs/1.8.1/distributed.html#torch.distributed.scatter)。 ## mindspore.communication.comm_func.scatter_tensor ```python mindspore.communication.comm_func.scatter_tensor(tensor, src=0, group=GlobalComm.WORLD_COMM_GROUP) ``` 更多内容详见[mindspore.communication.comm_func.scatter_tensor](https://www.mindspore.cn/docs/zh-CN/r2.4.10/api_python/communication/mindspore.communication.comm_func.scatter_tensor.html#mindspore.communication.comm_func.scatter_tensor)。 ## 差异对比 PyTorch:该接口输入当前进程的tensor、散射列表scatter_list、发送源的进程编号src、通信域group及异步操作标志async_op,进行scatter操作后输出tensor,类型为Tensor。当async_op=True时,返回异步work句柄,否则返回为空。 MindSpore:该接口输入待散射的tensor,发送源的进程编号src,通信域group,输出tensor,第一维等于输入数据第0维除以src,其余维度与输入tensor一致。当前该接口不支持async_op的配置。 | 分类 | 子类 |PyTorch | MindSpore | 差异 | | --- | --- | --- | --- |---| |参数 | 参数1 | tensor | tensor |PyTorch:进行scatter操作后的输出,MindSpore:待散射的tensor | | | 参数2 | scatter_list | - | PyTorch:待散射tensor列表,MindSpore无此参数| | | 参数3 | src | src |-| | | 参数4 | group | group |-| | | 参数5 | async_op | - |PyTorch:异步操作标志,MindSpore无此参数 |