mindspore.dataset.RenderedSST2Dataset ===================================== .. py:class:: mindspore.dataset.RenderedSST2Dataset(dataset_dir, usage=None, num_samples=None, num_parallel_workers=None, shuffle=None, decode=False, sampler=None, num_shards=None, shard_id=None, cache=None) RenderedSST2(Rendered Stanford Sentiment Treebank v2)数据集。 生成的数据集有两列 `[image, label]`。`image` 列的数据类型为uint8。`label` 列的数据类型为uint32。 参数: - **dataset_dir** (str) - 包含数据集文件的根目录路径。 - **usage** (str, 可选) - 指定数据集的子集,可取值为 'train'、'val'、'test' 或 'all'。默认值:None,读取全部样本图片。 - **num_samples** (int, 可选) - 指定从数据集中读取的样本数,可以小于数据集总数。默认值:None,读取全部样本图片。 - **num_parallel_workers** (int, 可选) - 指定读取数据的工作线程数。默认值:None,使用全局默认线程数(8),也可以通过 `mindspore.dataset.config.set_num_parallel_workers` 配置全局线程数。 - **shuffle** (bool, 可选) - 是否混洗数据集。默认值:None,下表中会展示不同参数配置的预期行为。 - **decode** (bool, 可选) - 是否对读取的图片进行解码操作。默认值:False,不解码。 - **sampler** (Sampler, 可选) - 指定从数据集中选取样本的采样器。默认值:None,下表中会展示不同配置的预期行为。 - **num_shards** (int, 可选) - 指定分布式训练时将数据集进行划分的分片数。默认值:None。指定此参数后, `num_samples` 表示每个分片的最大样本数。 - **shard_id** (int, 可选) - 指定分布式训练时使用的分片ID号。默认值:None。只有当指定了 `num_shards` 时才能指定此参数。 - **cache** (DatasetCache, 可选) - 单节点数据缓存服务,用于加快数据集处理,详情请阅读 `单节点数据缓存 `_ 。默认值:None,不使用缓存。 异常: - **RuntimeError** - `dataset_dir` 路径下不包含任何数据文件。 - **RuntimeError** - 同时指定了 `sampler` 和 `shuffle` 参数。 - **RuntimeError** - 同时指定了 `sampler` 和 `num_shards` 参数或同时指定了 `sampler` 和 `shard_id` 参数。 - **RuntimeError** - 指定了 `num_shards` 参数,但是未指定 `shard_id` 参数。 - **RuntimeError** - 指定了 `shard_id` 参数,但是未指定 `num_shards` 参数。 - **ValueError** - `usage` 参数取值不为'train'、'val'、'test'或'all'。 - **ValueError** - `num_parallel_workers` 参数超过系统最大线程数。 - **ValueError** - `shard_id` 参数值错误,小于0或者大于等于 `num_shards` 。 .. note:: 此数据集可以指定参数 `sampler` ,但参数 `sampler` 和参数 `shuffle` 的行为是互斥的。下表展示了几种合法的输入参数组合及预期的行为。 .. list-table:: 配置 `sampler` 和 `shuffle` 的不同组合得到的预期排序结果 :widths: 25 25 50 :header-rows: 1 * - 参数 `sampler` - 参数 `shuffle` - 预期数据顺序 * - None - None - 随机排列 * - None - True - 随机排列 * - None - False - 顺序排列 * - `sampler` 实例 - None - 由 `sampler` 行为定义的顺序 * - `sampler` 实例 - True - 不允许 * - `sampler` 实例 - False - 不允许 **关于RenderedSST2数据集:** Rendered SST2是一个图像分类数据集,它是由SST2数据集中的数据生成的。数据集被分割成三份,每一份包含有两类(positive和negative): 在train这一份下共有6920张图像(3610张positive,3310张negative),在validation这一份下共有872张图像(444张positive,428张negative), 在test这一份下共有1821张图像(909张positive,912张negative)。 以下为原始RenderedSST2数据集的结构,您可以将数据集文件解压得到如下的文件结构,并通过MindSpore的API进行读取。 .. code-block:: . └── rendered_sst2_dataset_directory ├── train │ ├── negative │ │ ├── 0001.jpg │ │ ├── 0002.jpg │ │ ... │ └── positive │ ├── 0001.jpg │ ├── 0002.jpg │ ... ├── test │ ├── negative │ │ ├── 0001.jpg │ │ ├── 0002.jpg │ │ ... │ └── positive │ ├── 0001.jpg │ ├── 0002.jpg │ ... └── valid ├── negative │ ├── 0001.jpg │ ├── 0002.jpg │ ... └── positive ├── 0001.jpg ├── 0002.jpg ... **引用:** .. code-block:: @inproceedings{socher-etal-2013-recursive, title = {Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank}, author = {Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D. and Ng, Andrew and Potts, Christopher}, booktitle = {Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing}, month = oct, year = {2013}, address = {Seattle, Washington, USA}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/D13-1170}, pages = {1631--1642}, } .. include:: mindspore.dataset.api_list_vision.txt