mindspore.ops.SGD ================= .. py:class:: mindspore.ops.SGD(dampening=0.0, weight_decay=0.0, nesterov=False) 计算随机梯度下降。动量为可选。 Nesterov动量基于论文 `On the importance of initialization and momentum in deep learning `_ 里的公式。 .. note:: 有关更多详细信息,请参阅: :class:`mindspore.nn.SGD` 。 **参数:** - **dampening** (float) - 动量的抑制因子。默认值:0.0。 - **weight_decay** (float) - 权重衰减系数(L2惩罚)。默认值:0.0。 - **nesterov** (bool) - 是否启用Nesterov动量。默认值:False。 **输入:** - **parameters** (Tensor) - 待更新的参数。数据类型为float16或float32。 - **gradient** (Tensor) - 梯度,数据类型为float16或float32。 - **learning_rate** (Tensor) - 学习率,是一个Scalar的Tensor,数据类型为float16或float32。例如Tensor(0.1, mindspore.float32)。 - **accum** (Tensor) - 待更新的累加器(速度)。数据类型为float16或float32。 - **momentum** (Tensor) - 动量,是一个Scalar的Tensor,数据类型为float16或float32。例如Tensor(0.1, mindspore.float32)。 - **stat** (Tensor) - 待更新的状态,其shape与梯度相同,数据类型为float16或float32。 **输出:** Tensor,更新后的参数。 **异常:** - **TypeError** - `dampening` 或 `weight_decay` 不是float。 - **TypeError** - `nesterov` 不是bool。 - **TypeError** - `parameters` 、 `gradient` 、 `learning_rate` 、 `accum` 、 `momentum` 或 `stat` 不是Tensor。 - **TypeError** - `parameters` 、 `gradient` 、 `learning_rate` 、 `accum` 、 `momentum` 或 `stat` 的数据类型既不是float16也不是float32。