Source code for mindspore.mindrecord.tools.cifar10_to_mr

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Cifar10 convert tool for MindRecord.
"""

from importlib import import_module
import os
import numpy as np

from mindspore import log as logger
from .cifar10 import Cifar10
from ..common.exceptions import PathNotExistsError
from ..filewriter import FileWriter
from ..shardutils import check_filename, ExceptionThread, SUCCESS, FAILED

try:
    cv2 = import_module("cv2")
except ModuleNotFoundError:
    cv2 = None

__all__ = ['Cifar10ToMR']


[文档]class Cifar10ToMR: """ A class to transform from cifar10 to MindRecord. Note: For details about Examples, please refer to `Converting the CIFAR-10 Dataset <https:// www.mindspore.cn/tutorials/zh-CN/r1.8/advanced/dataset/record.html#converting-the-cifar-10-dataset>`_. Args: source (str): The cifar10 directory to be transformed. destination (str): MindRecord file path to transform into, ensure that no file with the same name exists in the directory. Raises: ValueError: If source or destination is invalid. """ def __init__(self, source, destination): check_filename(source) self.source = source files = os.listdir(self.source) train_data_flag = False test_data_flag = False for file in files: if file.startswith("data_batch_"): train_data_flag = True if file.startswith("test_batch"): test_data_flag = True if not train_data_flag: raise PathNotExistsError("data_batch_*") if not test_data_flag: raise PathNotExistsError("test_batch") check_filename(destination) self.destination = destination self.writer = None
[文档] def run(self, fields=None): """ Execute transformation from cifar10 to MindRecord. Args: fields (list[str], optional): A list of index fields. Default: None. Returns: MSRStatus, SUCCESS or FAILED. """ if fields and not isinstance(fields, list): raise ValueError("The parameter fields should be None or list") cifar10_data = Cifar10(self.source, False) cifar10_data.load_data() images = cifar10_data.images logger.info("train images: {}".format(images.shape)) labels = cifar10_data.labels logger.info("train images label: {}".format(labels.shape)) test_images = cifar10_data.Test.images logger.info("test images: {}".format(test_images.shape)) test_labels = cifar10_data.Test.labels logger.info("test images label: {}".format(test_labels.shape)) data_list = _construct_raw_data(images, labels) test_data_list = _construct_raw_data(test_images, test_labels) if _generate_mindrecord(self.destination, data_list, fields, "img_train") != SUCCESS: return FAILED if _generate_mindrecord(self.destination + "_test", test_data_list, fields, "img_test") != SUCCESS: return FAILED return SUCCESS
[文档] def transform(self, fields=None): """ Encapsulate the run function to exit normally Args: fields (list[str], optional): A list of index fields. Default: None. Returns: MSRStatus, SUCCESS or FAILED. """ t = ExceptionThread(target=self.run, kwargs={'fields': fields}) t.daemon = True t.start() t.join() if t.exitcode != 0: raise t.exception return t.res
def _construct_raw_data(images, labels): """ Construct raw data from cifar10 data. Args: images (list): image list from cifar10. labels (list): label list from cifar10. Returns: list[dict], data dictionary constructed from cifar10. """ if not cv2: raise ModuleNotFoundError("opencv-python module not found, please use pip install it.") raw_data = [] for i, img in enumerate(images): label = np.int(labels[i][0]) _, img = cv2.imencode(".jpeg", img[..., [2, 1, 0]]) row_data = {"id": int(i), "data": img.tobytes(), "label": int(label)} raw_data.append(row_data) return raw_data def _generate_mindrecord(file_name, raw_data, fields, schema_desc): """ Generate MindRecord file from raw data. Args: file_name (str): File name of MindRecord File. fields (list[str]): Fields would be set as index which could not belong to blob fields and type could not be 'array' or 'bytes'. raw_data (dict): dict of raw data. schema_desc (str): String of schema description. Returns: MSRStatus, SUCCESS or FAILED. """ schema = {"id": {"type": "int64"}, "label": {"type": "int64"}, "data": {"type": "bytes"}} logger.info("transformed MindRecord schema is: {}".format(schema)) writer = FileWriter(file_name, 1) writer.add_schema(schema, schema_desc) if fields and isinstance(fields, list): writer.add_index(fields) writer.write_raw_data(raw_data) return writer.commit()