mindspore.dataset.dataloader.default_collate
- mindspore.dataset.dataloader.default_collate(batch)[源代码]
Take in a batch of data and put the elements within the batch into a tensor with an additional outer dimension - batch size.
The exact output type can be a
mindspore.Tensor
, a Sequence ofmindspore.Tensor
, a Collection ofmindspore.Tensor
, or left unchanged, depending on the input type. This is used as the default function for collation when batch_size or batch_sampler is defined inmindspore.dataset.dataloader.DataLoader
.Here is the general input type (based on the type of the element within the batch) to output type mapping:
mindspore.Tensor
->mindspore.Tensor
(with an added outer dimension batch size)NumPy Arrays ->
mindspore.Tensor
float ->
mindspore.Tensor
int ->
mindspore.Tensor
str -> str (unchanged)
bytes -> bytes (unchanged)
Mapping[K, V_i] -> Mapping[K, default_collate([V_1, V_2, …])]
NamedTuple[V1_i, V2_i, …] -> NamedTuple[default_collate([V1_1, V1_2, …]), default_collate([V2_1, V2_2, …]), …]
Sequence[V1_i, V2_i, …] -> Sequence[default_collate([V1_1, V1_2, …]), default_collate([V2_1, V2_2, …]), …]
- Parameters
batch – a single batch to be collated