# WithLossCell [![View Source On Gitee](https://gitee.com/mindspore/docs/raw/r1.3/resource/_static/logo_source.png)](https://gitee.com/mindspore/docs/blob/r1.3/docs/mindspore/programming_guide/source_en/withlosscell.md) `WithLossCell` is essentially a `Cell` that contains the loss function. To build `WithLossCell`, you need to define the network and loss function in advance. The following uses an example to describe how to use this function. First, you need to build a network. The content is as follows: ```python import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.nn.optim import Momentum import mindspore.ops as ops context.set_context(mode=context.GRAPH_MODE, device_target="GPU") class LeNet5(nn.Cell): """ Lenet network Args: num_class (int): Number of classes. Default: 10. num_channel (int): Number of channels. Default: 1. Returns: Tensor, output tensor Examples: >>> LeNet(num_class=10) """ def __init__(self, num_class=10, num_channel=1, include_top=True): super(LeNet5, self).__init__() self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid') self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid') self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.include_top = include_top if self.include_top: self.flatten = nn.Flatten() self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02)) self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02)) self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02)) def construct(self, x): x = self.conv1(x) x = self.relu(x) x = self.max_pool2d(x) x = self.conv2(x) x = self.relu(x) x = self.max_pool2d(x) if not self.include_top: return x x = self.flatten(x) x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return x ``` The following is an example of using `WithLossCell`. Define the network and loss functions, create a `WithLossCell`, and input the input data and label data. `WithLossCell` returns the calculation result based on the network and loss functions. ```python data = Tensor(np.ones([32, 1, 32, 32]).astype(np.float32) * 0.01) label = Tensor(np.ones([32]).astype(np.int32)) net = LeNet5() criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') net_with_criterion = WithLossCell(net, criterion) loss = net_with_criterion(data, label) print("+++++++++Loss+++++++++++++") print(loss) ``` The following information is displayed: ```text +++++++++Loss+++++++++++++ 2.302585 ```