# Loading a Model for Inference and Transfer Learning `Linux` `Ascend` `GPU` `CPU` `Model Loading` `Beginner` `Intermediate` `Expert` [![View Source On Gitee](https://gitee.com/mindspore/docs/raw/r1.3/resource/_static/logo_source.png)](https://gitee.com/mindspore/docs/blob/r1.3/docs/mindspore/programming_guide/source_en/load_model_for_inference_and_transfer.md) ## Overview CheckPoints which are saved locally during model training, they are used for inference and transfer training. The following uses examples to describe how to load models from local. ## Loading the local Model After saving CheckPoint files, you can load parameters. ### For Inference Validation In inference-only scenarios, use `load_checkpoint` to directly load parameters to the network for subsequent inference validation. The sample code is as follows: ```python resnet = ResNet50() load_checkpoint("resnet50-2_32.ckpt", net=resnet) dateset_eval = create_dataset(os.path.join(mnist_path, "test"), 32, 1) # define the test dataset loss = CrossEntropyLoss() model = Model(resnet, loss, metrics={"accuracy"}) acc = model.eval(dataset_eval) ``` The `load_checkpoint` method loads network parameters in the parameter file to the model. After the loading, parameters in the network are those saved in CheckPoints. The `eval` method validates the accuracy of the trained model. ### For Transfer Training In the retraining and fine-tuning scenarios for task interruption, you can load network parameters and optimizer parameters to the model. The sample code is as follows: ```python # return a parameter dict for model param_dict = load_checkpoint("resnet50-2_32.ckpt") resnet = ResNet50() opt = Momentum(resnet.trainable_params(), 0.01, 0.9) # load the parameter into net load_param_into_net(resnet, param_dict) # load the parameter into optimizer load_param_into_net(opt, param_dict) loss = SoftmaxCrossEntropyWithLogits() model = Model(resnet, loss, opt) model.train(epoch, dataset) ``` The `load_checkpoint` method returns a parameter dictionary and then the `load_param_into_net` method loads parameters in the parameter dictionary to the network or optimizer.