# 比较与torch.logical_not的功能差异 [![查看源文件](https://gitee.com/mindspore/docs/raw/r1.5/resource/_static/logo_source.png)](https://gitee.com/mindspore/docs/blob/r1.5/docs/mindspore/migration_guide/source_zh_cn/api_mapping/pytorch_diff/logical_not.md) ## torch.logical_not ```python class torch.logical_not(input, out=None) ``` 更多内容详见 [torch.logical_not](https://pytorch.org/docs/1.5.0/torch.html#torch.logical_not)。 ## mindspore.numpy.logical_not ```python class mindspore.numpy.logical_not(a, dtype=None) ``` 更多内容详见 [mindspore.numpy.logical_not](https://mindspore.cn/docs/api/zh-CN/r1.5/api_python/numpy/mindspore.numpy.logical_not.html#mindspore.numpy.logical_not)。 ## 使用方式 PyTorch: 计算给定输入张量的逐元素逻辑非。零被视为“False”,非零被视为“True”。 MindSpore: 按元素计算输入张量的逻辑非。输入应该是一个dtype为bool的张量。 ## 代码示例 ```python import mindspore.numpy as np import torch # MindSpore print(np.logical_not(np.array([True, False]))) # Tensor(shape=[2], dtype=Bool, value= [False, True]) print(np.logical_not(np.array([0, 1, -10]))) # TypeError: For 'LogicalNot or '~' operator', the type of `x` should be subclass of Tensor[Bool], but got Tensor[Int32]. # PyTorch print(torch.logical_not(torch.tensor([True, False]))) # tensor([False, True]) print(torch.logical_not(torch.tensor([0, 1, -10], dtype=torch.int8))) # tensor([ True, False, False]) print(torch.logical_not(torch.tensor([0., 1.5, -10.], dtype=torch.double))) # tensor([ True, False, False]) print(torch.logical_not(torch.tensor([0., 1., -10.], dtype=torch.double), out=torch.empty(3, dtype=torch.int16))) # tensor([1, 0, 0], dtype=torch.int16) ```