# 比较与torch.nn.BatchNorm1d的功能差异 [![查看源文件](https://gitee.com/mindspore/docs/raw/r1.5/resource/_static/logo_source.png)](https://gitee.com/mindspore/docs/blob/r1.5/docs/mindspore/migration_guide/source_zh_cn/api_mapping/pytorch_diff/BatchNorm1d.md) ## torch.nn.BatchNorm1d ```python class torch.nn.BatchNorm1d( num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True ) ``` 更多内容详见[torch.nn.BatchNorm1d](https://pytorch.org/docs/1.5.0/nn.html#torch.nn.BatchNorm1d)。 ## mindspore.nn.BatchNorm1d ```python class mindspore.nn.BatchNorm1d( num_features, eps=1e-05, momentum=0.9, affine=True, gamma_init="ones", beta_init="zeros", moving_mean_init="zeros", moving_var_init="ones", use_batch_statistics=None) ) ``` 更多内容详见[mindspore.nn.BatchNorm1d](https://mindspore.cn/docs/api/zh-CN/r1.5/api_python/nn/mindspore.nn.BatchNorm1d.html#mindspore.nn.BatchNorm1d)。 ## 使用方式 PyTorch:用于running_mean和running_var计算的momentum参数的默认值为0.1。 MindSpore:momentum参数的默认值为0.9,与Pytorch的momentum关系为1-momentum,即当Pytorch的momentum值为0.2时,MindSpore的momemtum应为0.8。 ## 代码示例 ```python # The following implements BatchNorm1d with MindSpore. import numpy as np import torch import mindspore.nn as nn from mindspore import Tensor net = nn.BatchNorm1d(num_features=4, momentum=0.8) x = Tensor(np.array([[0.7, 0.5, 0.5, 0.6], [0.5, 0.4, 0.6, 0.9]]).astype(np.float32)) output = net(x) print(output) # Out: # [[ 0.6999965 0.4999975 0.4999975 0.59999704 ] # [ 0.4999975 0.399998 0.59999704 0.89999545 ]] # The following implements BatchNorm1d with torch. input_x = torch.randn(2, 4) m = torch.nn.BatchNorm1d(4, momentum=0.2) output = m(input_x) print(output) # Out: # tensor([[-0.9991, -1.0000, -1.0000, 1.0000], # [ 0.9991, 1.0000, 1.0000, -1.0000]], # grad_fn=) ```