mindspore.train.CosineSimilarity
- class mindspore.train.CosineSimilarity(similarity='cosine', reduction='none', zero_diagonal=True)[source]
- Computes representation similarity. - Parameters
- similarity (str) – the computation logit. - 'cosine'means computing similarity.- 'dot'means computing dots of arrays, Default:- 'cosine'.
- reduction (str) – Specifies the reduction to be applied to the output. Support - 'none',- 'sum',- 'mean'(all along dim -1). Default:- 'none'.
- zero_diagonal (bool) – If - True, diagonals of results will be set to zero. Default:- True.
 
 - Supported Platforms:
- Ascend- GPU- CPU
 - Examples - >>> import numpy as np >>> from mindspore.train import CosineSimilarity >>> >>> test_data = np.array([[1, 3, 4, 7], [2, 4, 2, 5], [3, 1, 5, 8]]) >>> metric = CosineSimilarity() >>> metric.clear() >>> metric.update(test_data) >>> square_matrix = metric.eval() >>> print(square_matrix) [[0. 0.94025615 0.95162452] [0.94025615 0. 0.86146098] [0.95162452 0.86146098 0.]] - eval()[source]
- Computes the similarity matrix. - Returns
- numpy.ndarray. The similarity matrix. 
- Raises
- RuntimeError – If the update method is not called first, an error will be reported.