mindspore.ops.sum
- mindspore.ops.sum(input, dim=None, keepdim=False, *, dtype=None)[source]
Calculate sum of tensor elements over a given dim.
Note
The dim with tensor type is only used for compatibility with older versions and is not recommended.
- Parameters
input (Tensor) – The input tensor.
dim (Union[None, int, tuple(int), list(int), Tensor]) – Dimensions along which the sum is calculated. Default
None.keepdim (bool) – Whether the output tensor has dim retained or not. If
True, keep these reduced dimensions and the length is 1. IfFalse, will not keep these dimensions. DefaultFalse.
Note
If dim is
None, sum is calculated on all the elements of the input tensor.If dim is a tuple or list of ints or tensor, sum is calculated on all dimensions specified in dim .
- Keyword Arguments
dtype (
mindspore.dtype, optional) – The data type returned.- Returns
Tensor
- Supported Platforms:
AscendGPUCPU
Examples
>>> import mindspore >>> x = mindspore.tensor([[[1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]], ... [[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]], ... [[7, 7, 7, 7, 7, 7], [8, 8, 8, 8, 8, 8], [9, 9, 9, 9, 9, 9]]], mindspore.float32) >>> out = mindspore.ops.sum(input=x) >>> print(out) 270.0 >>> out = mindspore.ops.sum(input=x, dim=1) >>> print(out) [[ 6. 6. 6. 6. 6. 6.] [15. 15. 15. 15. 15. 15.] [24. 24. 24. 24. 24. 24.]] >>> out = mindspore.ops.sum(input=x, dim=2) >>> print(out) [[ 6. 12. 18.] [24. 30. 36.] [42. 48. 54.]] >>> out = mindspore.ops.sum(input=x, dim=[1, 2]) >>> print(out) [ 36. 90. 144.] >>> out = mindspore.ops.sum(input=x, dim=2, keepdim=True) >>> print(out) [[[ 6.] [12.] [18.]] [[24.] [30.] [36.]] [[42.] [48.] [54.]]] >>> print(out.ndim) 3