mindspore.ops.smooth_l1_loss
- mindspore.ops.smooth_l1_loss(input, target, beta=1.0, reduction='none')[source]
- Computes smooth L1 loss, a robust L1 loss. - SmoothL1Loss is a Loss similar to MSELoss but less sensitive to outliers as described in the Fast R-CNN by Ross Girshick. - Given two input \(x,\ y\) of length \(N\), the unreduced SmoothL1Loss can be described as follows: \[\begin{split}L_{i} = \begin{cases} \frac{0.5 (x_i - y_i)^{2}}{\text{beta}}, & \text{if } |x_i - y_i| < \text{beta} \\ |x_i - y_i| - 0.5 * \text{beta}, & \text{otherwise. } \end{cases}\end{split}\]- If reduction is not none, then: \[\begin{split}L = \begin{cases} \operatorname{mean}(L_{i}), & \text{if reduction} = \text{'mean';}\\ \operatorname{sum}(L_{i}), & \text{if reduction} = \text{'sum'.} \end{cases}\end{split}\]- Here \(\text{beta}\) controls the point where the loss function changes from quadratic to linear. \(\text{beta}>0\) , its default value is - 1.0. \(N\) is the batch size.- Warning - This API has poor performance on CPU and it is recommended to run it on the Ascend/GPU. - Parameters
- input (Tensor) – - Tensor of shape \((N, *)\) where \(*\) means, any number of additional dimensions.Supported dtypes: - Ascend: float16, float32, bfloat16. 
- CPU/GPU: float16, float32, float64. 
 
- target (Tensor) – - Ground truth data, tensor of shape \((N, *)\). - CPU/Ascend: has the same shape as the input, target and input comply with the implicit type conversion rules to make the data types consistent. 
- GPU: has the same shape and dtype as the input. 
 
- beta (number, optional) – - A parameter used to control the point where the function will change between L1 to L2 loss. Default: - 1.0.- Ascend: The value should be equal to or greater than zero. 
- CPU/GPU: The value should be greater than zero. 
 
- reduction (str, optional) – - Apply specific reduction method to the output: - 'none',- 'mean',- 'sum'. Default:- 'none'.- 'none': no reduction will be applied.
- 'mean': compute and return the mean of elements in the output.
- 'sum': the output elements will be summed.
 
 
- Returns
- Tensor, if reduction is - 'none', then output is a tensor with the same shape as input. Otherwise, the shape of output tensor is \(()\).
- Raises
- TypeError – If input input, target is not Tensor. 
- RuntimeError – If dtype of input or target is not one of float16, float32, float64, bfloat16. 
- ValueError – If shape of input is not the same as target. 
- ValueError – If reduction is not one of - 'none',- 'mean',- 'sum'.
- TypeError – If beta is not a float, int or bool. 
- RuntimeError – If beta is less than or equal to 0. 
 
 - Supported Platforms:
- Ascend- GPU- CPU
 - Examples - >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32) >>> labels = Tensor(np.array([1, 2, 2]), mindspore.float32) >>> output = ops.smooth_l1_loss(logits, labels) >>> print(output) [0. 0. 0.5]