mindspore.nn.probability.distribution.StudentT
- class mindspore.nn.probability.distribution.StudentT(df=None, mean=None, sd=None, seed=None, dtype=mstype.float32, name='StudentT')[source]
- StudentT distribution. A StudentT distribution is a continuous distribution with the range \((-\inf, \inf)\) and the probability density function: \[f(x, \nu, \mu, \sigma) = (1 + y^2 / \nu)^{(-0.5*(\nu + 1))} / Z\]- where \(y = (x - \mu)/ \sigma\), \(Z = abs(\sigma) * \sqrt{(\nu * \pi)} * \Gamma(0.5 * \nu) / \Gamma(0.5 * (\nu + 1))\), \(\nu, \mu, \sigma\) are the degrees of freedom , mean and sd of the laplace distribution respectively. - Parameters
- df (Union[int, float, list, numpy.ndarray, Tensor], optional) – The degrees of freedom. If this arg is - None, then the df of the distribution will be passed in runtime. Default:- None.
- mean (Union[int, float, list, numpy.ndarray, Tensor], optional) – The mean of the distribution. If this arg is - None, then the df of the distribution will be passed in runtime. Default:- None.
- sd (Union[int, float, list, numpy.ndarray, Tensor], optional) – The standard deviation of the distribution. If this arg is - None, then the sd of the distribution will be passed in runtime. Default:- None.
- seed (int, optional) – The seed used in sampling. The global seed is used if it is None. Default: - None.
- dtype (mindspore.dtype, optional) – The type of the event samples. Default: - mstype.float32.
- name (str, optional) – The name of the distribution. Default: - 'StudentT'.
 
 - Note - df must be greater than zero. 
- sd must be greater than zero. 
- dtype must be a float type because StudentT distributions are continuous. 
- If the arg df, mean or sd is passed in runtime, then it will be used as the parameter value. Otherwise, the value passed in the constructor will be used. 
 - Raises
- ValueError – When df <= 0. 
- ValueError – When sd <= 0. 
- TypeError – When the input dtype is not a subclass of float. 
 
 - Supported Platforms:
- CPU
 - Examples - >>> import mindspore >>> import mindspore.nn as nn >>> import mindspore.nn.probability.distribution as msd >>> from mindspore import Tensor >>> # To initialize a StudentT distribution of the df 2.0, the mean 3.0 and the standard deviation 4.0. >>> n1 = msd.StudentT(2.0, 3.0, 4.0, dtype=mindspore.float32) >>> # A StudentT distribution can be initialized without arguments. >>> # In this case, `df`, `mean` and `sd` must be passed in through arguments. >>> n2 = msd.StudentT(dtype=mindspore.float32) >>> # Here are some tensors used below for testing >>> value = Tensor([1.0, 2.0, 3.0], dtype=mindspore.float32) >>> df_a = Tensor([2.0], dtype=mindspore.float32) >>> mean_a = Tensor([2.0], dtype=mindspore.float32) >>> sd_a = Tensor([2.0, 2.0, 2.0], dtype=mindspore.float32) >>> df_b = Tensor([1.0], dtype=mindspore.float32) >>> mean_b = Tensor([1.0], dtype=mindspore.float32) >>> sd_b = Tensor([1.0, 1.5, 2.0], dtype=mindspore.float32) >>> ans = n1.log_prob(value) >>> print(ans.shape) (3,) >>> # Evaluate with respect to the distribution b. >>> ans = n1.log_prob(value, df_b, mean_b, sd_b) >>> print(ans.shape) (3,) >>> # `mean` and `sd` must be passed in during function calls >>> ans = n2.log_prob(value, df_a, mean_a, sd_a) >>> print(ans.shape) (3,) - log_prob(value, df=None, mean=None, sd=None)[source]
- Evaluate log probability of the value of the StudentT distribution. - Parameters
- value (Tensor) - the value to compute. 
- df (Tensor, optional) - the degrees of freedom of the distribution. Default: - None.
- mean (Tensor, optional) - the mean of the distribution. Default: - None.
- sd (Tensor, optional) - the standard deviation of the distribution. Default: - None.
 
- Returns
- Tensor, the log value of the probability.