mindspore.nn.probability.distribution.Cauchy
- class mindspore.nn.probability.distribution.Cauchy(loc=None, scale=None, seed=None, dtype=mstype.float32, name='Cauchy')[source]
- Cauchy distribution. A Cauchy distributio is a continuous distribution with the range of all real numbers and the probability density function: \[f(x, a, b) = 1 / \pi b(1 - ((x - a)/b)^2)\]- Where \(a, b\) are loc and scale parameter respectively. - Parameters
- loc (int, float, list, numpy.ndarray, Tensor) – The location of the Cauchy distribution. \(a\) in the formula. Default: - None.
- scale (int, float, list, numpy.ndarray, Tensor) – The scale of the Cauchy distribution. \(b\) in the formula. Default: - None.
- seed (int) – The seed used in sampling. The global seed is used if it is None. Default: - None.
- dtype (mindspore.dtype) – The type of the event samples. Default: - mstype.float32.
- name (str) – The name of the distribution. Default: - 'Cauchy'.
 
 - Note - scale must be greater than zero. dist_spec_args are loc and scale. dtype must be a float type because Cauchy distributions are continuous. Cauchy distribution is not supported on GPU backend. - Raises
- ValueError – When scale <= 0. 
- TypeError – When the input dtype is not a subclass of float. 
 
 - Supported Platforms:
- Ascend
 - Examples - >>> import mindspore >>> import mindspore.nn as nn >>> import mindspore.nn.probability.distribution as msd >>> from mindspore import Tensor >>> # To initialize a Cauchy distribution of loc 3.0 and scale 4.0. >>> cauchy1 = msd.Cauchy(3.0, 4.0, dtype=mindspore.float32) >>> # A Cauchy distribution can be initialized without arguments. >>> # In this case, 'loc' and `scale` must be passed in through arguments. >>> cauchy2 = msd.Cauchy(dtype=mindspore.float32) >>> # Here are some tensors used below for testing >>> value = Tensor([1.0, 2.0, 3.0], dtype=mindspore.float32) >>> loc_a = Tensor([2.0], dtype=mindspore.float32) >>> scale_a = Tensor([2.0, 2.0, 2.0], dtype=mindspore.float32) >>> loc_b = Tensor([1.0], dtype=mindspore.float32) >>> scale_b = Tensor([1.0, 1.5, 2.0], dtype=mindspore.float32) >>> # Private interfaces of probability functions corresponding to public interfaces, including >>> # `prob`, `log_prob`, `cdf`, `log_cdf`, `survival_function`, and `log_survival`, >>> # have the same arguments as follows. >>> # Args: >>> # value (Tensor): the value to be evaluated. >>> # loc (Tensor): the location of the distribution. Default: self.loc. >>> # scale (Tensor): the scale of the distribution. Default: self.scale. >>> # Examples of `prob`. >>> # Similar calls can be made to other probability functions >>> # by replacing 'prob' by the name of the function >>> ans = cauchy1.prob(value) >>> print(ans.shape) (3,) >>> # Evaluate with respect to distribution b. >>> ans = cauchy1.prob(value, loc_b, scale_b) >>> print(ans.shape) (3,) >>> # `loc` and `scale` must be passed in during function calls >>> ans = cauchy2.prob(value, loc_a, scale_a) >>> print(ans.shape) (3,) >>> # Functions `mode` and `entropy` have the same arguments. >>> # Args: >>> # loc (Tensor): the location of the distribution. Default: self.loc. >>> # scale (Tensor): the scale of the distribution. Default: self.scale. >>> # Example of `mode`. >>> ans = cauchy1.mode() # return 3.0 >>> print(ans.shape) () >>> ans = cauchy1.mode(loc_b, scale_b) # return loc_b >>> print(ans.shape) (3,) >>> # `loc` and `scale` must be passed in during function calls. >>> ans = cauchy2.mode(loc_a, scale_a) >>> print(ans.shape) (3,) >>> # Interfaces of 'kl_loss' and 'cross_entropy' are the same: >>> # Args: >>> # dist (str): the type of the distributions. Only "Cauchy" is supported. >>> # loc_b (Tensor): the loc of distribution b. >>> # scale_b (Tensor): the scale distribution b. >>> # loc (Tensor): the loc of distribution a. Default: self.loc. >>> # scale (Tensor): the scale distribution a. Default: self.scale. >>> # Examples of `kl_loss`. `cross_entropy` is similar. >>> ans = cauchy1.kl_loss('Cauchy', loc_b, scale_b) >>> print(ans.shape) (3,) >>> ans = cauchy1.kl_loss('Cauchy', loc_b, scale_b, loc_a, scale_a) >>> print(ans.shape) (3,) >>> # Additional `loc` and `scale` must be passed in. >>> ans = cauchy2.kl_loss('Cauchy', loc_b, scale_b, loc_a, scale_a) >>> print(ans.shape) (3,) >>> # Examples of `sample`. >>> # Args: >>> # shape (tuple): the shape of the sample. Default: () >>> # loc (Tensor): the location of the distribution. Default: self.loc. >>> # scale (Tensor): the scale of the distribution. Default: self.scale. >>> ans = cauchy1.sample() >>> print(ans.shape) () >>> ans = cauchy1.sample((2,3)) >>> print(ans.shape) (2, 3) >>> ans = cauchy1.sample((2,3), loc_b, scale_b) >>> print(ans.shape) (2, 3, 3) >>> ans = cauchy2.sample((2,3), loc_a, scale_a) >>> print(ans.shape) (2, 3, 3) - property loc
- Return the loc parameter of the distribution. - Returns
- Tensor, the loc parameter of the distribution. 
 
 - property scale
- Return the scale parameter of the distribution. - Returns
- Tensor, the scale parameter of the distribution. 
 
 - cdf(value, loc, scale)[source]
- Compute the cumulatuve distribution function(CDF) of the given value. - Parameters
- value (Tensor) - the value to compute. 
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the cumulatuve distribution function for the given input. 
 
 - cross_entropy(dist, loc_b, scale_b, loc, scale)[source]
- Compute the cross entropy of two distribution. - Parameters
- dist (str) - the type of the other distribution. 
- loc_b (Tensor) - the loc parameter of the other distribution. 
- scale_b (Tensor) - the scale parameter of the other distribution. 
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the cross entropy. 
 
 - entropy(loc, scale)[source]
- Compute the value of the entropy. - Parameters
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the entropy. 
 
 - kl_loss(dist, loc_b, scale_b, loc, scale)[source]
- Compute the value of the K-L loss between two distribution, namely KL(a||b). - Parameters
- dist (str) - the type of the other distribution. 
- loc_b (Tensor) - the loc parameter of the other distribution. 
- scale_b (Tensor) - the scale parameter of the other distribution. 
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the K-L loss. 
 
 - log_cdf(value, loc, scale)[source]
- Compute the log value of the cumulatuve distribution function. - Parameters
- value (Tensor) - the value to compute. 
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the log value of the cumulatuve distribution function. 
 
 - log_prob(value, loc, scale)[source]
- the log value of the probability. - Parameters
- value (Tensor) - the value to compute. 
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the log value of the probability. 
 
 - log_survival(value, loc, scale)[source]
- Compute the log value of the survival function. - Parameters
- value (Tensor) - the value to compute. 
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the K-L loss. 
 
 - mean(loc, scale)[source]
- Compute the mean value of the distribution. - Parameters
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the mean of the distribution. 
 
 - mode(loc, scale)[source]
- Compute the mode value of the distribution. - Parameters
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the mode of the distribution. 
 
 - prob(value, loc, scale)[source]
- The probability of the given value. For the continuous distribution, it is the probability density function. - Parameters
- value (Tensor) - the value to compute. 
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the probability. 
 
 - sample(shape, loc, scale)[source]
- Generate samples. - Parameters
- shape (tuple) - the shape of the sample. 
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the sample following the distribution. 
 
 - sd(loc, scale)[source]
- The standard deviation. - Parameters
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the standard deviation of the distribution. 
 
 - survival_function(value, loc, scale)[source]
- Compute the value of the survival function. - Parameters
- value (Tensor) - the value to compute. 
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the survival function.