mindspore.nn.probability.bijector.ScalarAffine
- class mindspore.nn.probability.bijector.ScalarAffine(scale=1.0, shift=0.0, name='ScalarAffine')[source]
- Scalar Affine Bijector. This Bijector performs the operation: \[Y = a * X + b\]- where \(a\) is the scale factor and \(b\) is the shift factor. - Parameters
 - Note - The dtype of shift and scale must be float. If shift, scale are passed in as numpy.ndarray or tensor, they have to have the same dtype otherwise an error will be raised. - Raises
- TypeError – When the dtype of shift or scale is not float, and when the dtype of shift and scale is not same. 
 - Supported Platforms:
- Ascend- GPU
 - Examples - >>> import mindspore >>> import mindspore.nn as nn >>> from mindspore import Tensor >>> >>> # To initialize a ScalarAffine bijector of scale 1.0 and shift 2. >>> scalaraffine = nn.probability.bijector.ScalarAffine(1.0, 2.0) >>> value = Tensor([1, 2, 3], dtype=mindspore.float32) >>> ans1 = scalaraffine.forward(value) >>> print(ans1.shape) (3,) >>> ans2 = scalaraffine.inverse(value) >>> print(ans2.shape) (3,) >>> ans3 = scalaraffine.forward_log_jacobian(value) >>> print(ans3.shape) () >>> ans4 = scalaraffine.inverse_log_jacobian(value) >>> print(ans4.shape) () - property shift
- Return the shift parameter of the bijector. - Returns
- Tensor, the shift parameter of the bijector. 
 
 - property scale
- Return the scale parameter of the bijector. - Returns
- Tensor, the scale parameter of the bijector. 
 
 - forward(value)[source]
- forward mapping, compute the value after mapping. - Parameters
- value (Tensor) - the value to compute. 
 
- Returns
- Tensor, the value to compute. 
 
 - forward_log_jacobian(value)[source]
- compute the log value after mapping. - Parameters
- value (Tensor) - the value to compute. 
 
- Returns
- Tensor, the log value of forward mapping.